excalidraw/packages/math/src/point.ts
Mathias Krafft 37412cd68a Fix linting
2025-04-07 13:59:50 +00:00

296 lines
8.4 KiB
TypeScript

import { degreesToRadians, radiansToDegrees } from "./angle";
import { PRECISION } from "./utils";
import { vectorDot, vectorFromPoint, vectorScale } from "./vector";
import type {
LocalPoint,
GlobalPoint,
Radians,
Degrees,
Vector,
} from "./types";
/**
* Create a properly typed Point instance from the X and Y coordinates.
*
* @param x The X coordinate
* @param y The Y coordinate
* @returns The branded and created point
*/
export function pointFrom<Point extends GlobalPoint | LocalPoint>(
x: number,
y: number,
): Point {
return [x, y] as Point;
}
/**
* Converts and remaps an array containing a pair of numbers to Point.
*
* @param numberArray The number array to check and to convert to Point
* @returns The point instance
*/
export function pointFromArray<Point extends GlobalPoint | LocalPoint>(
numberArray: number[],
): Point | undefined {
return numberArray.length === 2
? pointFrom<Point>(numberArray[0], numberArray[1])
: undefined;
}
/**
* Converts and remaps a pair of numbers to Point.
*
* @param pair A number pair to convert to Point
* @returns The point instance
*/
export function pointFromPair<Point extends GlobalPoint | LocalPoint>(
pair: [number, number],
): Point {
return pair as Point;
}
/**
* Convert a vector to a point.
*
* @param v The vector to convert
* @returns The point the vector points at with origin 0,0
*/
export function pointFromVector<P extends GlobalPoint | LocalPoint>(
v: Vector,
offset: P = pointFrom(0, 0),
): P {
return pointFrom<P>(offset[0] + v[0], offset[1] + v[1]);
}
/**
* Checks if the provided value has the shape of a Point.
*
* @param p The value to attempt verification on
* @returns TRUE if the provided value has the shape of a local or global point
*/
export function isPoint(p: unknown): p is LocalPoint | GlobalPoint {
return (
Array.isArray(p) &&
p.length === 2 &&
typeof p[0] === "number" &&
!isNaN(p[0]) &&
typeof p[1] === "number" &&
!isNaN(p[1])
);
}
/**
* Compare two points coordinate-by-coordinate and if
* they are closer than INVERSE_PRECISION it returns TRUE.
*
* @param a Point The first point to compare
* @param b Point The second point to compare
* @returns TRUE if the points are sufficiently close to each other
*/
export function pointsEqual<Point extends GlobalPoint | LocalPoint>(
a: Point,
b: Point,
): boolean {
const abs = Math.abs;
return abs(a[0] - b[0]) < PRECISION && abs(a[1] - b[1]) < PRECISION;
}
/**
* Rotate a point by [angle] radians.
*
* @param point The point to rotate
* @param center The point to rotate around, the center point
* @param angle The radians to rotate the point by
* @returns The rotated point
*/
export function pointRotateRads<Point extends GlobalPoint | LocalPoint>(
[x, y]: Point,
[cx, cy]: Point,
angle: Radians,
): Point {
return pointFrom(
(x - cx) * Math.cos(angle) - (y - cy) * Math.sin(angle) + cx,
(x - cx) * Math.sin(angle) + (y - cy) * Math.cos(angle) + cy,
);
}
/**
* Rotate a point by [angle] degree.
*
* @param point The point to rotate
* @param center The point to rotate around, the center point
* @param angle The degree to rotate the point by
* @returns The rotated point
*/
export function pointRotateDegs<Point extends GlobalPoint | LocalPoint>(
point: Point,
center: Point,
angle: Degrees,
): Point {
return pointRotateRads(point, center, degreesToRadians(angle));
}
/**
* Translate a point by a vector.
*
* WARNING: This is not for translating Excalidraw element points!
* You need to account for rotation on base coordinates
* on your own.
* CONSIDER USING AN APPROPRIATE ELEMENT-AWARE TRANSLATE!
*
* @param p The point to apply the translation on
* @param v The vector to translate by
* @returns
*/
// TODO 99% of use is translating between global and local coords, which need to be formalized
export function pointTranslate<
From extends GlobalPoint | LocalPoint,
To extends GlobalPoint | LocalPoint,
>(p: From, v: Vector = [0, 0] as Vector): To {
return pointFrom(p[0] + v[0], p[1] + v[1]);
}
/**
* Find the center point at equal distance from both points.
*
* @param a One of the points to create the middle point for
* @param b The other point to create the middle point for
* @returns The middle point
*/
export function pointCenter<P extends LocalPoint | GlobalPoint>(a: P, b: P): P {
return pointFrom((a[0] + b[0]) / 2, (a[1] + b[1]) / 2);
}
/**
* Calculate the distance between two points.
*
* @param a First point
* @param b Second point
* @returns The euclidean distance between the two points.
*/
export function pointDistance<P extends LocalPoint | GlobalPoint>(
a: P,
b: P,
): number {
return Math.hypot(b[0] - a[0], b[1] - a[1]);
}
/**
* Calculate the squared distance between two points.
*
* Note: Use this if you only compare distances, it saves a square root.
*
* @param a First point
* @param b Second point
* @returns The euclidean distance between the two points.
*/
export function pointDistanceSq<P extends LocalPoint | GlobalPoint>(
a: P,
b: P,
): number {
const xDiff = b[0] - a[0];
const yDiff = b[1] - a[1];
return xDiff * xDiff + yDiff * yDiff;
}
/**
* Scale a point from a given origin by the multiplier.
*
* @param p The point to scale
* @param mid The origin to scale from
* @param multiplier The scaling factor
* @returns
*/
export const pointScaleFromOrigin = <P extends GlobalPoint | LocalPoint>(
p: P,
mid: P,
multiplier: number,
) => pointTranslate(mid, vectorScale(vectorFromPoint(p, mid), multiplier));
/**
* Returns whether `q` lies inside the segment/rectangle defined by `p` and `r`.
* This is an approximation to "does `q` lie on a segment `pr`" check.
*
* @param p The first point to compare against
* @param q The actual point this function checks whether is in between
* @param r The other point to compare against
* @returns TRUE if q is indeed between p and r
*/
export const isPointWithinBounds = <P extends GlobalPoint | LocalPoint>(
p: P,
q: P,
r: P,
) => {
return (
q[0] <= Math.max(p[0], r[0]) &&
q[0] >= Math.min(p[0], r[0]) &&
q[1] <= Math.max(p[1], r[1]) &&
q[1] >= Math.min(p[1], r[1])
);
};
/**
* Calculates the perpendicular distance from a point to a line segment defined by two endpoints.
*
* If the segment is of zero length, the function returns the distance from the point to the start.
*
* @typeParam P - The point type, restricted to LocalPoint or GlobalPoint.
* @param p - The point from which the perpendicular distance is measured.
* @param start - The starting point of the line segment.
* @param end - The ending point of the line segment.
* @returns The perpendicular distance from point p to the line segment defined by start and end.
*/
export const perpendicularDistance = <P extends GlobalPoint | LocalPoint>(
p: P,
start: P,
end: P,
): number => {
const dx = end[0] - start[0];
const dy = end[1] - start[1];
if (dx === 0 && dy === 0) {
return Math.hypot(p[0] - start[0], p[1] - start[1]);
}
// Equation of line distance
const numerator = Math.abs(
dy * p[0] - dx * p[1] + end[0] * start[1] - end[1] * start[0],
);
const denom = Math.hypot(dx, dy);
return numerator / denom;
};
/** * Calculates the angle between three points in degrees.
* The angle is calculated at the first point (p0) using the second (p1) and third (p2) points.
* The angle is measured in degrees and is always positive.
* The function uses the dot product and the arccosine function to calculate the angle. * The result is clamped to the range [-1, 1] to avoid precision errors.
* @param p0 The first point used to form the angle.
* @param p1 The vertex point where the angle is calculated.
* @param p2 The second point used to form the angle.
* @returns The angle in degrees between the three points.
**/
export const angleBetween = <P extends GlobalPoint | LocalPoint>(
p0: P,
p1: P,
p2: P,
): Degrees => {
const v1 = vectorFromPoint(p0, p1);
const v2 = vectorFromPoint(p1, p2);
// dot and cross product
const magnitude1 = Math.hypot(v1[0], v1[1]);
const magnitude2 = Math.hypot(v2[0], v2[1]);
if (magnitude1 === 0 || magnitude2 === 0) {
return 0 as Degrees;
}
const dot = vectorDot(v1, v2);
let cos = dot / (magnitude1 * magnitude2);
// Clamp cos to [-1,1] to avoid precision errors
cos = Math.max(-1, Math.min(1, cos));
const rad = Math.acos(cos) as Radians;
return radiansToDegrees(rad);
};