mirror of
https://github.com/excalidraw/excalidraw.git
synced 2025-04-14 16:40:58 -04:00
296 lines
8.4 KiB
TypeScript
296 lines
8.4 KiB
TypeScript
import { degreesToRadians, radiansToDegrees } from "./angle";
|
|
import { PRECISION } from "./utils";
|
|
import { vectorDot, vectorFromPoint, vectorScale } from "./vector";
|
|
|
|
import type {
|
|
LocalPoint,
|
|
GlobalPoint,
|
|
Radians,
|
|
Degrees,
|
|
Vector,
|
|
} from "./types";
|
|
|
|
/**
|
|
* Create a properly typed Point instance from the X and Y coordinates.
|
|
*
|
|
* @param x The X coordinate
|
|
* @param y The Y coordinate
|
|
* @returns The branded and created point
|
|
*/
|
|
export function pointFrom<Point extends GlobalPoint | LocalPoint>(
|
|
x: number,
|
|
y: number,
|
|
): Point {
|
|
return [x, y] as Point;
|
|
}
|
|
|
|
/**
|
|
* Converts and remaps an array containing a pair of numbers to Point.
|
|
*
|
|
* @param numberArray The number array to check and to convert to Point
|
|
* @returns The point instance
|
|
*/
|
|
export function pointFromArray<Point extends GlobalPoint | LocalPoint>(
|
|
numberArray: number[],
|
|
): Point | undefined {
|
|
return numberArray.length === 2
|
|
? pointFrom<Point>(numberArray[0], numberArray[1])
|
|
: undefined;
|
|
}
|
|
|
|
/**
|
|
* Converts and remaps a pair of numbers to Point.
|
|
*
|
|
* @param pair A number pair to convert to Point
|
|
* @returns The point instance
|
|
*/
|
|
export function pointFromPair<Point extends GlobalPoint | LocalPoint>(
|
|
pair: [number, number],
|
|
): Point {
|
|
return pair as Point;
|
|
}
|
|
|
|
/**
|
|
* Convert a vector to a point.
|
|
*
|
|
* @param v The vector to convert
|
|
* @returns The point the vector points at with origin 0,0
|
|
*/
|
|
export function pointFromVector<P extends GlobalPoint | LocalPoint>(
|
|
v: Vector,
|
|
offset: P = pointFrom(0, 0),
|
|
): P {
|
|
return pointFrom<P>(offset[0] + v[0], offset[1] + v[1]);
|
|
}
|
|
|
|
/**
|
|
* Checks if the provided value has the shape of a Point.
|
|
*
|
|
* @param p The value to attempt verification on
|
|
* @returns TRUE if the provided value has the shape of a local or global point
|
|
*/
|
|
export function isPoint(p: unknown): p is LocalPoint | GlobalPoint {
|
|
return (
|
|
Array.isArray(p) &&
|
|
p.length === 2 &&
|
|
typeof p[0] === "number" &&
|
|
!isNaN(p[0]) &&
|
|
typeof p[1] === "number" &&
|
|
!isNaN(p[1])
|
|
);
|
|
}
|
|
|
|
/**
|
|
* Compare two points coordinate-by-coordinate and if
|
|
* they are closer than INVERSE_PRECISION it returns TRUE.
|
|
*
|
|
* @param a Point The first point to compare
|
|
* @param b Point The second point to compare
|
|
* @returns TRUE if the points are sufficiently close to each other
|
|
*/
|
|
export function pointsEqual<Point extends GlobalPoint | LocalPoint>(
|
|
a: Point,
|
|
b: Point,
|
|
): boolean {
|
|
const abs = Math.abs;
|
|
return abs(a[0] - b[0]) < PRECISION && abs(a[1] - b[1]) < PRECISION;
|
|
}
|
|
|
|
/**
|
|
* Rotate a point by [angle] radians.
|
|
*
|
|
* @param point The point to rotate
|
|
* @param center The point to rotate around, the center point
|
|
* @param angle The radians to rotate the point by
|
|
* @returns The rotated point
|
|
*/
|
|
export function pointRotateRads<Point extends GlobalPoint | LocalPoint>(
|
|
[x, y]: Point,
|
|
[cx, cy]: Point,
|
|
angle: Radians,
|
|
): Point {
|
|
return pointFrom(
|
|
(x - cx) * Math.cos(angle) - (y - cy) * Math.sin(angle) + cx,
|
|
(x - cx) * Math.sin(angle) + (y - cy) * Math.cos(angle) + cy,
|
|
);
|
|
}
|
|
|
|
/**
|
|
* Rotate a point by [angle] degree.
|
|
*
|
|
* @param point The point to rotate
|
|
* @param center The point to rotate around, the center point
|
|
* @param angle The degree to rotate the point by
|
|
* @returns The rotated point
|
|
*/
|
|
export function pointRotateDegs<Point extends GlobalPoint | LocalPoint>(
|
|
point: Point,
|
|
center: Point,
|
|
angle: Degrees,
|
|
): Point {
|
|
return pointRotateRads(point, center, degreesToRadians(angle));
|
|
}
|
|
|
|
/**
|
|
* Translate a point by a vector.
|
|
*
|
|
* WARNING: This is not for translating Excalidraw element points!
|
|
* You need to account for rotation on base coordinates
|
|
* on your own.
|
|
* CONSIDER USING AN APPROPRIATE ELEMENT-AWARE TRANSLATE!
|
|
*
|
|
* @param p The point to apply the translation on
|
|
* @param v The vector to translate by
|
|
* @returns
|
|
*/
|
|
// TODO 99% of use is translating between global and local coords, which need to be formalized
|
|
export function pointTranslate<
|
|
From extends GlobalPoint | LocalPoint,
|
|
To extends GlobalPoint | LocalPoint,
|
|
>(p: From, v: Vector = [0, 0] as Vector): To {
|
|
return pointFrom(p[0] + v[0], p[1] + v[1]);
|
|
}
|
|
|
|
/**
|
|
* Find the center point at equal distance from both points.
|
|
*
|
|
* @param a One of the points to create the middle point for
|
|
* @param b The other point to create the middle point for
|
|
* @returns The middle point
|
|
*/
|
|
export function pointCenter<P extends LocalPoint | GlobalPoint>(a: P, b: P): P {
|
|
return pointFrom((a[0] + b[0]) / 2, (a[1] + b[1]) / 2);
|
|
}
|
|
|
|
/**
|
|
* Calculate the distance between two points.
|
|
*
|
|
* @param a First point
|
|
* @param b Second point
|
|
* @returns The euclidean distance between the two points.
|
|
*/
|
|
export function pointDistance<P extends LocalPoint | GlobalPoint>(
|
|
a: P,
|
|
b: P,
|
|
): number {
|
|
return Math.hypot(b[0] - a[0], b[1] - a[1]);
|
|
}
|
|
|
|
/**
|
|
* Calculate the squared distance between two points.
|
|
*
|
|
* Note: Use this if you only compare distances, it saves a square root.
|
|
*
|
|
* @param a First point
|
|
* @param b Second point
|
|
* @returns The euclidean distance between the two points.
|
|
*/
|
|
export function pointDistanceSq<P extends LocalPoint | GlobalPoint>(
|
|
a: P,
|
|
b: P,
|
|
): number {
|
|
const xDiff = b[0] - a[0];
|
|
const yDiff = b[1] - a[1];
|
|
|
|
return xDiff * xDiff + yDiff * yDiff;
|
|
}
|
|
|
|
/**
|
|
* Scale a point from a given origin by the multiplier.
|
|
*
|
|
* @param p The point to scale
|
|
* @param mid The origin to scale from
|
|
* @param multiplier The scaling factor
|
|
* @returns
|
|
*/
|
|
export const pointScaleFromOrigin = <P extends GlobalPoint | LocalPoint>(
|
|
p: P,
|
|
mid: P,
|
|
multiplier: number,
|
|
) => pointTranslate(mid, vectorScale(vectorFromPoint(p, mid), multiplier));
|
|
|
|
/**
|
|
* Returns whether `q` lies inside the segment/rectangle defined by `p` and `r`.
|
|
* This is an approximation to "does `q` lie on a segment `pr`" check.
|
|
*
|
|
* @param p The first point to compare against
|
|
* @param q The actual point this function checks whether is in between
|
|
* @param r The other point to compare against
|
|
* @returns TRUE if q is indeed between p and r
|
|
*/
|
|
export const isPointWithinBounds = <P extends GlobalPoint | LocalPoint>(
|
|
p: P,
|
|
q: P,
|
|
r: P,
|
|
) => {
|
|
return (
|
|
q[0] <= Math.max(p[0], r[0]) &&
|
|
q[0] >= Math.min(p[0], r[0]) &&
|
|
q[1] <= Math.max(p[1], r[1]) &&
|
|
q[1] >= Math.min(p[1], r[1])
|
|
);
|
|
};
|
|
|
|
/**
|
|
* Calculates the perpendicular distance from a point to a line segment defined by two endpoints.
|
|
*
|
|
* If the segment is of zero length, the function returns the distance from the point to the start.
|
|
*
|
|
* @typeParam P - The point type, restricted to LocalPoint or GlobalPoint.
|
|
* @param p - The point from which the perpendicular distance is measured.
|
|
* @param start - The starting point of the line segment.
|
|
* @param end - The ending point of the line segment.
|
|
* @returns The perpendicular distance from point p to the line segment defined by start and end.
|
|
*/
|
|
export const perpendicularDistance = <P extends GlobalPoint | LocalPoint>(
|
|
p: P,
|
|
start: P,
|
|
end: P,
|
|
): number => {
|
|
const dx = end[0] - start[0];
|
|
const dy = end[1] - start[1];
|
|
if (dx === 0 && dy === 0) {
|
|
return Math.hypot(p[0] - start[0], p[1] - start[1]);
|
|
}
|
|
// Equation of line distance
|
|
const numerator = Math.abs(
|
|
dy * p[0] - dx * p[1] + end[0] * start[1] - end[1] * start[0],
|
|
);
|
|
const denom = Math.hypot(dx, dy);
|
|
return numerator / denom;
|
|
};
|
|
|
|
/** * Calculates the angle between three points in degrees.
|
|
* The angle is calculated at the first point (p0) using the second (p1) and third (p2) points.
|
|
* The angle is measured in degrees and is always positive.
|
|
* The function uses the dot product and the arccosine function to calculate the angle. * The result is clamped to the range [-1, 1] to avoid precision errors.
|
|
* @param p0 The first point used to form the angle.
|
|
* @param p1 The vertex point where the angle is calculated.
|
|
* @param p2 The second point used to form the angle.
|
|
* @returns The angle in degrees between the three points.
|
|
**/
|
|
export const angleBetween = <P extends GlobalPoint | LocalPoint>(
|
|
p0: P,
|
|
p1: P,
|
|
p2: P,
|
|
): Degrees => {
|
|
const v1 = vectorFromPoint(p0, p1);
|
|
const v2 = vectorFromPoint(p1, p2);
|
|
|
|
// dot and cross product
|
|
const magnitude1 = Math.hypot(v1[0], v1[1]);
|
|
const magnitude2 = Math.hypot(v2[0], v2[1]);
|
|
|
|
if (magnitude1 === 0 || magnitude2 === 0) {
|
|
return 0 as Degrees;
|
|
}
|
|
|
|
const dot = vectorDot(v1, v2);
|
|
|
|
let cos = dot / (magnitude1 * magnitude2);
|
|
// Clamp cos to [-1,1] to avoid precision errors
|
|
cos = Math.max(-1, Math.min(1, cos));
|
|
const rad = Math.acos(cos) as Radians;
|
|
|
|
return radiansToDegrees(rad);
|
|
};
|