mirror of
https://github.com/excalidraw/excalidraw.git
synced 2025-05-03 10:00:07 -04:00
chore: Unify math types, utils and functions (#8389)
Co-authored-by: dwelle <5153846+dwelle@users.noreply.github.com>
This commit is contained in:
parent
e3d1dee9d0
commit
f4dd23fc31
98 changed files with 4291 additions and 3661 deletions
317
packages/math/ga/ga.ts
Normal file
317
packages/math/ga/ga.ts
Normal file
|
@ -0,0 +1,317 @@
|
|||
/**
|
||||
* This is a 2D Projective Geometric Algebra implementation.
|
||||
*
|
||||
* For wider context on geometric algebra visit see https://bivector.net.
|
||||
*
|
||||
* For this specific algebra see cheatsheet https://bivector.net/2DPGA.pdf.
|
||||
*
|
||||
* Converted from generator written by enki, with a ton of added on top.
|
||||
*
|
||||
* This library uses 8-vectors to represent points, directions and lines
|
||||
* in 2D space.
|
||||
*
|
||||
* An array `[a, b, c, d, e, f, g, h]` represents a n(8)vector:
|
||||
* a + b*e0 + c*e1 + d*e2 + e*e01 + f*e20 + g*e12 + h*e012
|
||||
*
|
||||
* See GAPoint, GALine, GADirection and GATransform modules for common
|
||||
* operations.
|
||||
*/
|
||||
|
||||
export type Point = NVector;
|
||||
export type Direction = NVector;
|
||||
export type Line = NVector;
|
||||
export type Transform = NVector;
|
||||
|
||||
export const point = (x: number, y: number): Point => [0, 0, 0, 0, y, x, 1, 0];
|
||||
|
||||
export const origin = (): Point => [0, 0, 0, 0, 0, 0, 1, 0];
|
||||
|
||||
export const direction = (x: number, y: number): Direction => {
|
||||
const norm = Math.hypot(x, y); // same as `inorm(direction(x, y))`
|
||||
return [0, 0, 0, 0, y / norm, x / norm, 0, 0];
|
||||
};
|
||||
|
||||
export const offset = (x: number, y: number): Direction => [
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
y,
|
||||
x,
|
||||
0,
|
||||
0,
|
||||
];
|
||||
|
||||
/// This is the "implementation" part of the library
|
||||
|
||||
type NVector = readonly [
|
||||
number,
|
||||
number,
|
||||
number,
|
||||
number,
|
||||
number,
|
||||
number,
|
||||
number,
|
||||
number,
|
||||
];
|
||||
|
||||
// These are labels for what each number in an nvector represents
|
||||
const NVECTOR_BASE = ["1", "e0", "e1", "e2", "e01", "e20", "e12", "e012"];
|
||||
|
||||
// Used to represent points, lines and transformations
|
||||
export const nvector = (value: number = 0, index: number = 0): NVector => {
|
||||
const result = [0, 0, 0, 0, 0, 0, 0, 0];
|
||||
if (index < 0 || index > 7) {
|
||||
throw new Error(`Expected \`index\` between 0 and 7, got \`${index}\``);
|
||||
}
|
||||
if (value !== 0) {
|
||||
result[index] = value;
|
||||
}
|
||||
return result as unknown as NVector;
|
||||
};
|
||||
|
||||
const STRING_EPSILON = 0.000001;
|
||||
export const toString = (nvector: NVector): string => {
|
||||
const result = nvector
|
||||
.map((value, index) =>
|
||||
Math.abs(value) > STRING_EPSILON
|
||||
? value.toFixed(7).replace(/(\.|0+)$/, "") +
|
||||
(index > 0 ? NVECTOR_BASE[index] : "")
|
||||
: null,
|
||||
)
|
||||
.filter((representation) => representation != null)
|
||||
.join(" + ");
|
||||
return result === "" ? "0" : result;
|
||||
};
|
||||
|
||||
// Reverse the order of the basis blades.
|
||||
export const reverse = (nvector: NVector): NVector => [
|
||||
nvector[0],
|
||||
nvector[1],
|
||||
nvector[2],
|
||||
nvector[3],
|
||||
-nvector[4],
|
||||
-nvector[5],
|
||||
-nvector[6],
|
||||
-nvector[7],
|
||||
];
|
||||
|
||||
// Poincare duality operator.
|
||||
export const dual = (nvector: NVector): NVector => [
|
||||
nvector[7],
|
||||
nvector[6],
|
||||
nvector[5],
|
||||
nvector[4],
|
||||
nvector[3],
|
||||
nvector[2],
|
||||
nvector[1],
|
||||
nvector[0],
|
||||
];
|
||||
|
||||
// Clifford Conjugation
|
||||
export const conjugate = (nvector: NVector): NVector => [
|
||||
nvector[0],
|
||||
-nvector[1],
|
||||
-nvector[2],
|
||||
-nvector[3],
|
||||
-nvector[4],
|
||||
-nvector[5],
|
||||
-nvector[6],
|
||||
nvector[7],
|
||||
];
|
||||
|
||||
// Main involution
|
||||
export const involute = (nvector: NVector): NVector => [
|
||||
nvector[0],
|
||||
-nvector[1],
|
||||
-nvector[2],
|
||||
-nvector[3],
|
||||
nvector[4],
|
||||
nvector[5],
|
||||
nvector[6],
|
||||
-nvector[7],
|
||||
];
|
||||
|
||||
// Multivector addition
|
||||
export const add = (a: NVector, b: NVector | number): NVector => {
|
||||
if (isNumber(b)) {
|
||||
return [a[0] + b, a[1], a[2], a[3], a[4], a[5], a[6], a[7]];
|
||||
}
|
||||
return [
|
||||
a[0] + b[0],
|
||||
a[1] + b[1],
|
||||
a[2] + b[2],
|
||||
a[3] + b[3],
|
||||
a[4] + b[4],
|
||||
a[5] + b[5],
|
||||
a[6] + b[6],
|
||||
a[7] + b[7],
|
||||
];
|
||||
};
|
||||
|
||||
// Multivector subtraction
|
||||
export const sub = (a: NVector, b: NVector | number): NVector => {
|
||||
if (isNumber(b)) {
|
||||
return [a[0] - b, a[1], a[2], a[3], a[4], a[5], a[6], a[7]];
|
||||
}
|
||||
return [
|
||||
a[0] - b[0],
|
||||
a[1] - b[1],
|
||||
a[2] - b[2],
|
||||
a[3] - b[3],
|
||||
a[4] - b[4],
|
||||
a[5] - b[5],
|
||||
a[6] - b[6],
|
||||
a[7] - b[7],
|
||||
];
|
||||
};
|
||||
|
||||
// The geometric product.
|
||||
export const mul = (a: NVector, b: NVector | number): NVector => {
|
||||
if (isNumber(b)) {
|
||||
return [
|
||||
a[0] * b,
|
||||
a[1] * b,
|
||||
a[2] * b,
|
||||
a[3] * b,
|
||||
a[4] * b,
|
||||
a[5] * b,
|
||||
a[6] * b,
|
||||
a[7] * b,
|
||||
];
|
||||
}
|
||||
return [
|
||||
mulScalar(a, b),
|
||||
b[1] * a[0] +
|
||||
b[0] * a[1] -
|
||||
b[4] * a[2] +
|
||||
b[5] * a[3] +
|
||||
b[2] * a[4] -
|
||||
b[3] * a[5] -
|
||||
b[7] * a[6] -
|
||||
b[6] * a[7],
|
||||
b[2] * a[0] + b[0] * a[2] - b[6] * a[3] + b[3] * a[6],
|
||||
b[3] * a[0] + b[6] * a[2] + b[0] * a[3] - b[2] * a[6],
|
||||
b[4] * a[0] +
|
||||
b[2] * a[1] -
|
||||
b[1] * a[2] +
|
||||
b[7] * a[3] +
|
||||
b[0] * a[4] +
|
||||
b[6] * a[5] -
|
||||
b[5] * a[6] +
|
||||
b[3] * a[7],
|
||||
b[5] * a[0] -
|
||||
b[3] * a[1] +
|
||||
b[7] * a[2] +
|
||||
b[1] * a[3] -
|
||||
b[6] * a[4] +
|
||||
b[0] * a[5] +
|
||||
b[4] * a[6] +
|
||||
b[2] * a[7],
|
||||
b[6] * a[0] + b[3] * a[2] - b[2] * a[3] + b[0] * a[6],
|
||||
b[7] * a[0] +
|
||||
b[6] * a[1] +
|
||||
b[5] * a[2] +
|
||||
b[4] * a[3] +
|
||||
b[3] * a[4] +
|
||||
b[2] * a[5] +
|
||||
b[1] * a[6] +
|
||||
b[0] * a[7],
|
||||
];
|
||||
};
|
||||
|
||||
export const mulScalar = (a: NVector, b: NVector): number =>
|
||||
b[0] * a[0] + b[2] * a[2] + b[3] * a[3] - b[6] * a[6];
|
||||
|
||||
// The outer/exterior/wedge product.
|
||||
export const meet = (a: NVector, b: NVector): NVector => [
|
||||
b[0] * a[0],
|
||||
b[1] * a[0] + b[0] * a[1],
|
||||
b[2] * a[0] + b[0] * a[2],
|
||||
b[3] * a[0] + b[0] * a[3],
|
||||
b[4] * a[0] + b[2] * a[1] - b[1] * a[2] + b[0] * a[4],
|
||||
b[5] * a[0] - b[3] * a[1] + b[1] * a[3] + b[0] * a[5],
|
||||
b[6] * a[0] + b[3] * a[2] - b[2] * a[3] + b[0] * a[6],
|
||||
b[7] * a[0] +
|
||||
b[6] * a[1] +
|
||||
b[5] * a[2] +
|
||||
b[4] * a[3] +
|
||||
b[3] * a[4] +
|
||||
b[2] * a[5] +
|
||||
b[1] * a[6],
|
||||
];
|
||||
|
||||
// The regressive product.
|
||||
export const join = (a: NVector, b: NVector): NVector => [
|
||||
joinScalar(a, b),
|
||||
a[1] * b[7] + a[4] * b[5] - a[5] * b[4] + a[7] * b[1],
|
||||
a[2] * b[7] - a[4] * b[6] + a[6] * b[4] + a[7] * b[2],
|
||||
a[3] * b[7] + a[5] * b[6] - a[6] * b[5] + a[7] * b[3],
|
||||
a[4] * b[7] + a[7] * b[4],
|
||||
a[5] * b[7] + a[7] * b[5],
|
||||
a[6] * b[7] + a[7] * b[6],
|
||||
a[7] * b[7],
|
||||
];
|
||||
|
||||
export const joinScalar = (a: NVector, b: NVector): number =>
|
||||
a[0] * b[7] +
|
||||
a[1] * b[6] +
|
||||
a[2] * b[5] +
|
||||
a[3] * b[4] +
|
||||
a[4] * b[3] +
|
||||
a[5] * b[2] +
|
||||
a[6] * b[1] +
|
||||
a[7] * b[0];
|
||||
|
||||
// The inner product.
|
||||
export const dot = (a: NVector, b: NVector): NVector => [
|
||||
b[0] * a[0] + b[2] * a[2] + b[3] * a[3] - b[6] * a[6],
|
||||
b[1] * a[0] +
|
||||
b[0] * a[1] -
|
||||
b[4] * a[2] +
|
||||
b[5] * a[3] +
|
||||
b[2] * a[4] -
|
||||
b[3] * a[5] -
|
||||
b[7] * a[6] -
|
||||
b[6] * a[7],
|
||||
b[2] * a[0] + b[0] * a[2] - b[6] * a[3] + b[3] * a[6],
|
||||
b[3] * a[0] + b[6] * a[2] + b[0] * a[3] - b[2] * a[6],
|
||||
b[4] * a[0] + b[7] * a[3] + b[0] * a[4] + b[3] * a[7],
|
||||
b[5] * a[0] + b[7] * a[2] + b[0] * a[5] + b[2] * a[7],
|
||||
b[6] * a[0] + b[0] * a[6],
|
||||
b[7] * a[0] + b[0] * a[7],
|
||||
];
|
||||
|
||||
export const norm = (a: NVector): number =>
|
||||
Math.sqrt(Math.abs(a[0] * a[0] - a[2] * a[2] - a[3] * a[3] + a[6] * a[6]));
|
||||
|
||||
export const inorm = (a: NVector): number =>
|
||||
Math.sqrt(Math.abs(a[7] * a[7] - a[5] * a[5] - a[4] * a[4] + a[1] * a[1]));
|
||||
|
||||
export const normalized = (a: NVector): NVector => {
|
||||
const n = norm(a);
|
||||
if (n === 0 || n === 1) {
|
||||
return a;
|
||||
}
|
||||
const sign = a[6] < 0 ? -1 : 1;
|
||||
return mul(a, sign / n);
|
||||
};
|
||||
|
||||
export const inormalized = (a: NVector): NVector => {
|
||||
const n = inorm(a);
|
||||
if (n === 0 || n === 1) {
|
||||
return a;
|
||||
}
|
||||
return mul(a, 1 / n);
|
||||
};
|
||||
|
||||
const isNumber = (a: any): a is number => typeof a === "number";
|
||||
|
||||
export const E0: NVector = nvector(1, 1);
|
||||
export const E1: NVector = nvector(1, 2);
|
||||
export const E2: NVector = nvector(1, 3);
|
||||
export const E01: NVector = nvector(1, 4);
|
||||
export const E20: NVector = nvector(1, 5);
|
||||
export const E12: NVector = nvector(1, 6);
|
||||
export const E012: NVector = nvector(1, 7);
|
||||
export const I = E012;
|
Loading…
Add table
Add a link
Reference in a new issue