build: decouple package deps and introduce yarn workspaces (#7415)

* feat: decouple package deps and introduce yarn workspaces

* update root directory

* fix

* fix scripts

* fix lint

* update path in scripts

* remove yarn.lock files from packages

* ignore workspace

* dummy

* dummy

* remove comment check

* revert workflow changes

* ignore ws when installing gh actions

* remove log

* update path

* fix

* fix typo
This commit is contained in:
Aakansha Doshi 2023-12-12 11:32:51 +05:30 committed by GitHub
parent b7d7ccc929
commit d6cd8b78f1
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
567 changed files with 5066 additions and 8648 deletions

513
packages/excalidraw/math.ts Normal file
View file

@ -0,0 +1,513 @@
import { NormalizedZoomValue, Point, Zoom } from "./types";
import {
DEFAULT_ADAPTIVE_RADIUS,
LINE_CONFIRM_THRESHOLD,
DEFAULT_PROPORTIONAL_RADIUS,
ROUNDNESS,
} from "./constants";
import {
ExcalidrawElement,
ExcalidrawLinearElement,
NonDeleted,
} from "./element/types";
import { getCurvePathOps } from "./element/bounds";
import { Mutable } from "./utility-types";
import { ShapeCache } from "./scene/ShapeCache";
export const rotate = (
// target point to rotate
x: number,
y: number,
// point to rotate against
cx: number,
cy: number,
angle: number,
): [number, number] =>
// 𝑎𝑥=(𝑎𝑥𝑐𝑥)cos𝜃(𝑎𝑦𝑐𝑦)sin𝜃+𝑐𝑥
// 𝑎𝑦=(𝑎𝑥𝑐𝑥)sin𝜃+(𝑎𝑦𝑐𝑦)cos𝜃+𝑐𝑦.
// https://math.stackexchange.com/questions/2204520/how-do-i-rotate-a-line-segment-in-a-specific-point-on-the-line
[
(x - cx) * Math.cos(angle) - (y - cy) * Math.sin(angle) + cx,
(x - cx) * Math.sin(angle) + (y - cy) * Math.cos(angle) + cy,
];
export const rotatePoint = (
point: Point,
center: Point,
angle: number,
): [number, number] => rotate(point[0], point[1], center[0], center[1], angle);
export const adjustXYWithRotation = (
sides: {
n?: boolean;
e?: boolean;
s?: boolean;
w?: boolean;
},
x: number,
y: number,
angle: number,
deltaX1: number,
deltaY1: number,
deltaX2: number,
deltaY2: number,
): [number, number] => {
const cos = Math.cos(angle);
const sin = Math.sin(angle);
if (sides.e && sides.w) {
x += deltaX1 + deltaX2;
} else if (sides.e) {
x += deltaX1 * (1 + cos);
y += deltaX1 * sin;
x += deltaX2 * (1 - cos);
y += deltaX2 * -sin;
} else if (sides.w) {
x += deltaX1 * (1 - cos);
y += deltaX1 * -sin;
x += deltaX2 * (1 + cos);
y += deltaX2 * sin;
}
if (sides.n && sides.s) {
y += deltaY1 + deltaY2;
} else if (sides.n) {
x += deltaY1 * sin;
y += deltaY1 * (1 - cos);
x += deltaY2 * -sin;
y += deltaY2 * (1 + cos);
} else if (sides.s) {
x += deltaY1 * -sin;
y += deltaY1 * (1 + cos);
x += deltaY2 * sin;
y += deltaY2 * (1 - cos);
}
return [x, y];
};
export const getPointOnAPath = (point: Point, path: Point[]) => {
const [px, py] = point;
const [start, ...other] = path;
let [lastX, lastY] = start;
let kLine: number = 0;
let idx: number = 0;
// if any item in the array is true, it means that a point is
// on some segment of a line based path
const retVal = other.some(([x2, y2], i) => {
// we always take a line when dealing with line segments
const x1 = lastX;
const y1 = lastY;
lastX = x2;
lastY = y2;
// if a point is not within the domain of the line segment
// it is not on the line segment
if (px < x1 || px > x2) {
return false;
}
// check if all points lie on the same line
// y1 = kx1 + b, y2 = kx2 + b
// y2 - y1 = k(x2 - x2) -> k = (y2 - y1) / (x2 - x1)
// coefficient for the line (p0, p1)
const kL = (y2 - y1) / (x2 - x1);
// coefficient for the line segment (p0, point)
const kP1 = (py - y1) / (px - x1);
// coefficient for the line segment (point, p1)
const kP2 = (py - y2) / (px - x2);
// because we are basing both lines from the same starting point
// the only option for collinearity is having same coefficients
// using it for floating point comparisons
const epsilon = 0.3;
// if coefficient is more than an arbitrary epsilon,
// these lines are nor collinear
if (Math.abs(kP1 - kL) > epsilon && Math.abs(kP2 - kL) > epsilon) {
return false;
}
// store the coefficient because we are goint to need it
kLine = kL;
idx = i;
return true;
});
// Return a coordinate that is always on the line segment
if (retVal === true) {
return { x: point[0], y: kLine * point[0], segment: idx };
}
return null;
};
export const distance2d = (x1: number, y1: number, x2: number, y2: number) => {
const xd = x2 - x1;
const yd = y2 - y1;
return Math.hypot(xd, yd);
};
export const centerPoint = (a: Point, b: Point): Point => {
return [(a[0] + b[0]) / 2, (a[1] + b[1]) / 2];
};
// Checks if the first and last point are close enough
// to be considered a loop
export const isPathALoop = (
points: ExcalidrawLinearElement["points"],
/** supply if you want the loop detection to account for current zoom */
zoomValue: Zoom["value"] = 1 as NormalizedZoomValue,
): boolean => {
if (points.length >= 3) {
const [first, last] = [points[0], points[points.length - 1]];
const distance = distance2d(first[0], first[1], last[0], last[1]);
// Adjusting LINE_CONFIRM_THRESHOLD to current zoom so that when zoomed in
// really close we make the threshold smaller, and vice versa.
return distance <= LINE_CONFIRM_THRESHOLD / zoomValue;
}
return false;
};
// Draw a line from the point to the right till infiinty
// Check how many lines of the polygon does this infinite line intersects with
// If the number of intersections is odd, point is in the polygon
export const isPointInPolygon = (
points: Point[],
x: number,
y: number,
): boolean => {
const vertices = points.length;
// There must be at least 3 vertices in polygon
if (vertices < 3) {
return false;
}
const extreme: Point = [Number.MAX_SAFE_INTEGER, y];
const p: Point = [x, y];
let count = 0;
for (let i = 0; i < vertices; i++) {
const current = points[i];
const next = points[(i + 1) % vertices];
if (doSegmentsIntersect(current, next, p, extreme)) {
if (orderedColinearOrientation(current, p, next) === 0) {
return isPointWithinBounds(current, p, next);
}
count++;
}
}
// true if count is off
return count % 2 === 1;
};
// Returns whether `q` lies inside the segment/rectangle defined by `p` and `r`.
// This is an approximation to "does `q` lie on a segment `pr`" check.
export const isPointWithinBounds = (p: Point, q: Point, r: Point) => {
return (
q[0] <= Math.max(p[0], r[0]) &&
q[0] >= Math.min(p[0], r[0]) &&
q[1] <= Math.max(p[1], r[1]) &&
q[1] >= Math.min(p[1], r[1])
);
};
// For the ordered points p, q, r, return
// 0 if p, q, r are colinear
// 1 if Clockwise
// 2 if counterclickwise
const orderedColinearOrientation = (p: Point, q: Point, r: Point) => {
const val = (q[1] - p[1]) * (r[0] - q[0]) - (q[0] - p[0]) * (r[1] - q[1]);
if (val === 0) {
return 0;
}
return val > 0 ? 1 : 2;
};
// Check is p1q1 intersects with p2q2
const doSegmentsIntersect = (p1: Point, q1: Point, p2: Point, q2: Point) => {
const o1 = orderedColinearOrientation(p1, q1, p2);
const o2 = orderedColinearOrientation(p1, q1, q2);
const o3 = orderedColinearOrientation(p2, q2, p1);
const o4 = orderedColinearOrientation(p2, q2, q1);
if (o1 !== o2 && o3 !== o4) {
return true;
}
// p1, q1 and p2 are colinear and p2 lies on segment p1q1
if (o1 === 0 && isPointWithinBounds(p1, p2, q1)) {
return true;
}
// p1, q1 and p2 are colinear and q2 lies on segment p1q1
if (o2 === 0 && isPointWithinBounds(p1, q2, q1)) {
return true;
}
// p2, q2 and p1 are colinear and p1 lies on segment p2q2
if (o3 === 0 && isPointWithinBounds(p2, p1, q2)) {
return true;
}
// p2, q2 and q1 are colinear and q1 lies on segment p2q2
if (o4 === 0 && isPointWithinBounds(p2, q1, q2)) {
return true;
}
return false;
};
// TODO: Rounding this point causes some shake when free drawing
export const getGridPoint = (
x: number,
y: number,
gridSize: number | null,
): [number, number] => {
if (gridSize) {
return [
Math.round(x / gridSize) * gridSize,
Math.round(y / gridSize) * gridSize,
];
}
return [x, y];
};
export const getCornerRadius = (x: number, element: ExcalidrawElement) => {
if (
element.roundness?.type === ROUNDNESS.PROPORTIONAL_RADIUS ||
element.roundness?.type === ROUNDNESS.LEGACY
) {
return x * DEFAULT_PROPORTIONAL_RADIUS;
}
if (element.roundness?.type === ROUNDNESS.ADAPTIVE_RADIUS) {
const fixedRadiusSize = element.roundness?.value ?? DEFAULT_ADAPTIVE_RADIUS;
const CUTOFF_SIZE = fixedRadiusSize / DEFAULT_PROPORTIONAL_RADIUS;
if (x <= CUTOFF_SIZE) {
return x * DEFAULT_PROPORTIONAL_RADIUS;
}
return fixedRadiusSize;
}
return 0;
};
export const getControlPointsForBezierCurve = (
element: NonDeleted<ExcalidrawLinearElement>,
endPoint: Point,
) => {
const shape = ShapeCache.generateElementShape(element, null);
if (!shape) {
return null;
}
const ops = getCurvePathOps(shape[0]);
let currentP: Mutable<Point> = [0, 0];
let index = 0;
let minDistance = Infinity;
let controlPoints: Mutable<Point>[] | null = null;
while (index < ops.length) {
const { op, data } = ops[index];
if (op === "move") {
currentP = data as unknown as Mutable<Point>;
}
if (op === "bcurveTo") {
const p0 = currentP;
const p1 = [data[0], data[1]] as Mutable<Point>;
const p2 = [data[2], data[3]] as Mutable<Point>;
const p3 = [data[4], data[5]] as Mutable<Point>;
const distance = distance2d(p3[0], p3[1], endPoint[0], endPoint[1]);
if (distance < minDistance) {
minDistance = distance;
controlPoints = [p0, p1, p2, p3];
}
currentP = p3;
}
index++;
}
return controlPoints;
};
export const getBezierXY = (
p0: Point,
p1: Point,
p2: Point,
p3: Point,
t: number,
) => {
const equation = (t: number, idx: number) =>
Math.pow(1 - t, 3) * p3[idx] +
3 * t * Math.pow(1 - t, 2) * p2[idx] +
3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
p0[idx] * Math.pow(t, 3);
const tx = equation(t, 0);
const ty = equation(t, 1);
return [tx, ty];
};
export const getPointsInBezierCurve = (
element: NonDeleted<ExcalidrawLinearElement>,
endPoint: Point,
) => {
const controlPoints: Mutable<Point>[] = getControlPointsForBezierCurve(
element,
endPoint,
)!;
if (!controlPoints) {
return [];
}
const pointsOnCurve: Mutable<Point>[] = [];
let t = 1;
// Take 20 points on curve for better accuracy
while (t > 0) {
const point = getBezierXY(
controlPoints[0],
controlPoints[1],
controlPoints[2],
controlPoints[3],
t,
);
pointsOnCurve.push([point[0], point[1]]);
t -= 0.05;
}
if (pointsOnCurve.length) {
if (arePointsEqual(pointsOnCurve.at(-1)!, endPoint)) {
pointsOnCurve.push([endPoint[0], endPoint[1]]);
}
}
return pointsOnCurve;
};
export const getBezierCurveArcLengths = (
element: NonDeleted<ExcalidrawLinearElement>,
endPoint: Point,
) => {
const arcLengths: number[] = [];
arcLengths[0] = 0;
const points = getPointsInBezierCurve(element, endPoint);
let index = 0;
let distance = 0;
while (index < points.length - 1) {
const segmentDistance = distance2d(
points[index][0],
points[index][1],
points[index + 1][0],
points[index + 1][1],
);
distance += segmentDistance;
arcLengths.push(distance);
index++;
}
return arcLengths;
};
export const getBezierCurveLength = (
element: NonDeleted<ExcalidrawLinearElement>,
endPoint: Point,
) => {
const arcLengths = getBezierCurveArcLengths(element, endPoint);
return arcLengths.at(-1) as number;
};
// This maps interval to actual interval t on the curve so that when t = 0.5, its actually the point at 50% of the length
export const mapIntervalToBezierT = (
element: NonDeleted<ExcalidrawLinearElement>,
endPoint: Point,
interval: number, // The interval between 0 to 1 for which you want to find the point on the curve,
) => {
const arcLengths = getBezierCurveArcLengths(element, endPoint);
const pointsCount = arcLengths.length - 1;
const curveLength = arcLengths.at(-1) as number;
const targetLength = interval * curveLength;
let low = 0;
let high = pointsCount;
let index = 0;
// Doing a binary search to find the largest length that is less than the target length
while (low < high) {
index = Math.floor(low + (high - low) / 2);
if (arcLengths[index] < targetLength) {
low = index + 1;
} else {
high = index;
}
}
if (arcLengths[index] > targetLength) {
index--;
}
if (arcLengths[index] === targetLength) {
return index / pointsCount;
}
return (
1 -
(index +
(targetLength - arcLengths[index]) /
(arcLengths[index + 1] - arcLengths[index])) /
pointsCount
);
};
export const arePointsEqual = (p1: Point, p2: Point) => {
return p1[0] === p2[0] && p1[1] === p2[1];
};
export const isRightAngle = (angle: number) => {
// if our angles were mathematically accurate, we could just check
//
// angle % (Math.PI / 2) === 0
//
// but since we're in floating point land, we need to round.
//
// Below, after dividing by Math.PI, a multiple of 0.5 indicates a right
// angle, which we can check with modulo after rounding.
return Math.round((angle / Math.PI) * 10000) % 5000 === 0;
};
// Given two ranges, return if the two ranges overlap with each other
// e.g. [1, 3] overlaps with [2, 4] while [1, 3] does not overlap with [4, 5]
export const rangesOverlap = (
[a0, a1]: [number, number],
[b0, b1]: [number, number],
) => {
if (a0 <= b0) {
return a1 >= b0;
}
if (a0 >= b0) {
return b1 >= a0;
}
return false;
};
// Given two ranges,return ther intersection of the two ranges if any
// e.g. the intersection of [1, 3] and [2, 4] is [2, 3]
export const rangeIntersection = (
rangeA: [number, number],
rangeB: [number, number],
): [number, number] | null => {
const rangeStart = Math.max(rangeA[0], rangeB[0]);
const rangeEnd = Math.min(rangeA[1], rangeB[1]);
if (rangeStart <= rangeEnd) {
return [rangeStart, rangeEnd];
}
return null;
};
export const isValueInRange = (value: number, min: number, max: number) => {
return value >= min && value <= max;
};