mirror of
https://github.com/excalidraw/excalidraw.git
synced 2025-05-03 10:00:07 -04:00
build: decouple package deps and introduce yarn workspaces (#7415)
* feat: decouple package deps and introduce yarn workspaces * update root directory * fix * fix scripts * fix lint * update path in scripts * remove yarn.lock files from packages * ignore workspace * dummy * dummy * remove comment check * revert workflow changes * ignore ws when installing gh actions * remove log * update path * fix * fix typo
This commit is contained in:
parent
b7d7ccc929
commit
d6cd8b78f1
567 changed files with 5066 additions and 8648 deletions
513
packages/excalidraw/math.ts
Normal file
513
packages/excalidraw/math.ts
Normal file
|
@ -0,0 +1,513 @@
|
|||
import { NormalizedZoomValue, Point, Zoom } from "./types";
|
||||
import {
|
||||
DEFAULT_ADAPTIVE_RADIUS,
|
||||
LINE_CONFIRM_THRESHOLD,
|
||||
DEFAULT_PROPORTIONAL_RADIUS,
|
||||
ROUNDNESS,
|
||||
} from "./constants";
|
||||
import {
|
||||
ExcalidrawElement,
|
||||
ExcalidrawLinearElement,
|
||||
NonDeleted,
|
||||
} from "./element/types";
|
||||
import { getCurvePathOps } from "./element/bounds";
|
||||
import { Mutable } from "./utility-types";
|
||||
import { ShapeCache } from "./scene/ShapeCache";
|
||||
|
||||
export const rotate = (
|
||||
// target point to rotate
|
||||
x: number,
|
||||
y: number,
|
||||
// point to rotate against
|
||||
cx: number,
|
||||
cy: number,
|
||||
angle: number,
|
||||
): [number, number] =>
|
||||
// 𝑎′𝑥=(𝑎𝑥−𝑐𝑥)cos𝜃−(𝑎𝑦−𝑐𝑦)sin𝜃+𝑐𝑥
|
||||
// 𝑎′𝑦=(𝑎𝑥−𝑐𝑥)sin𝜃+(𝑎𝑦−𝑐𝑦)cos𝜃+𝑐𝑦.
|
||||
// https://math.stackexchange.com/questions/2204520/how-do-i-rotate-a-line-segment-in-a-specific-point-on-the-line
|
||||
[
|
||||
(x - cx) * Math.cos(angle) - (y - cy) * Math.sin(angle) + cx,
|
||||
(x - cx) * Math.sin(angle) + (y - cy) * Math.cos(angle) + cy,
|
||||
];
|
||||
|
||||
export const rotatePoint = (
|
||||
point: Point,
|
||||
center: Point,
|
||||
angle: number,
|
||||
): [number, number] => rotate(point[0], point[1], center[0], center[1], angle);
|
||||
|
||||
export const adjustXYWithRotation = (
|
||||
sides: {
|
||||
n?: boolean;
|
||||
e?: boolean;
|
||||
s?: boolean;
|
||||
w?: boolean;
|
||||
},
|
||||
x: number,
|
||||
y: number,
|
||||
angle: number,
|
||||
deltaX1: number,
|
||||
deltaY1: number,
|
||||
deltaX2: number,
|
||||
deltaY2: number,
|
||||
): [number, number] => {
|
||||
const cos = Math.cos(angle);
|
||||
const sin = Math.sin(angle);
|
||||
if (sides.e && sides.w) {
|
||||
x += deltaX1 + deltaX2;
|
||||
} else if (sides.e) {
|
||||
x += deltaX1 * (1 + cos);
|
||||
y += deltaX1 * sin;
|
||||
x += deltaX2 * (1 - cos);
|
||||
y += deltaX2 * -sin;
|
||||
} else if (sides.w) {
|
||||
x += deltaX1 * (1 - cos);
|
||||
y += deltaX1 * -sin;
|
||||
x += deltaX2 * (1 + cos);
|
||||
y += deltaX2 * sin;
|
||||
}
|
||||
|
||||
if (sides.n && sides.s) {
|
||||
y += deltaY1 + deltaY2;
|
||||
} else if (sides.n) {
|
||||
x += deltaY1 * sin;
|
||||
y += deltaY1 * (1 - cos);
|
||||
x += deltaY2 * -sin;
|
||||
y += deltaY2 * (1 + cos);
|
||||
} else if (sides.s) {
|
||||
x += deltaY1 * -sin;
|
||||
y += deltaY1 * (1 + cos);
|
||||
x += deltaY2 * sin;
|
||||
y += deltaY2 * (1 - cos);
|
||||
}
|
||||
return [x, y];
|
||||
};
|
||||
|
||||
export const getPointOnAPath = (point: Point, path: Point[]) => {
|
||||
const [px, py] = point;
|
||||
const [start, ...other] = path;
|
||||
let [lastX, lastY] = start;
|
||||
let kLine: number = 0;
|
||||
let idx: number = 0;
|
||||
|
||||
// if any item in the array is true, it means that a point is
|
||||
// on some segment of a line based path
|
||||
const retVal = other.some(([x2, y2], i) => {
|
||||
// we always take a line when dealing with line segments
|
||||
const x1 = lastX;
|
||||
const y1 = lastY;
|
||||
|
||||
lastX = x2;
|
||||
lastY = y2;
|
||||
|
||||
// if a point is not within the domain of the line segment
|
||||
// it is not on the line segment
|
||||
if (px < x1 || px > x2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// check if all points lie on the same line
|
||||
// y1 = kx1 + b, y2 = kx2 + b
|
||||
// y2 - y1 = k(x2 - x2) -> k = (y2 - y1) / (x2 - x1)
|
||||
|
||||
// coefficient for the line (p0, p1)
|
||||
const kL = (y2 - y1) / (x2 - x1);
|
||||
|
||||
// coefficient for the line segment (p0, point)
|
||||
const kP1 = (py - y1) / (px - x1);
|
||||
|
||||
// coefficient for the line segment (point, p1)
|
||||
const kP2 = (py - y2) / (px - x2);
|
||||
|
||||
// because we are basing both lines from the same starting point
|
||||
// the only option for collinearity is having same coefficients
|
||||
|
||||
// using it for floating point comparisons
|
||||
const epsilon = 0.3;
|
||||
|
||||
// if coefficient is more than an arbitrary epsilon,
|
||||
// these lines are nor collinear
|
||||
if (Math.abs(kP1 - kL) > epsilon && Math.abs(kP2 - kL) > epsilon) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// store the coefficient because we are goint to need it
|
||||
kLine = kL;
|
||||
idx = i;
|
||||
|
||||
return true;
|
||||
});
|
||||
|
||||
// Return a coordinate that is always on the line segment
|
||||
if (retVal === true) {
|
||||
return { x: point[0], y: kLine * point[0], segment: idx };
|
||||
}
|
||||
|
||||
return null;
|
||||
};
|
||||
|
||||
export const distance2d = (x1: number, y1: number, x2: number, y2: number) => {
|
||||
const xd = x2 - x1;
|
||||
const yd = y2 - y1;
|
||||
return Math.hypot(xd, yd);
|
||||
};
|
||||
|
||||
export const centerPoint = (a: Point, b: Point): Point => {
|
||||
return [(a[0] + b[0]) / 2, (a[1] + b[1]) / 2];
|
||||
};
|
||||
|
||||
// Checks if the first and last point are close enough
|
||||
// to be considered a loop
|
||||
export const isPathALoop = (
|
||||
points: ExcalidrawLinearElement["points"],
|
||||
/** supply if you want the loop detection to account for current zoom */
|
||||
zoomValue: Zoom["value"] = 1 as NormalizedZoomValue,
|
||||
): boolean => {
|
||||
if (points.length >= 3) {
|
||||
const [first, last] = [points[0], points[points.length - 1]];
|
||||
const distance = distance2d(first[0], first[1], last[0], last[1]);
|
||||
|
||||
// Adjusting LINE_CONFIRM_THRESHOLD to current zoom so that when zoomed in
|
||||
// really close we make the threshold smaller, and vice versa.
|
||||
return distance <= LINE_CONFIRM_THRESHOLD / zoomValue;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
// Draw a line from the point to the right till infiinty
|
||||
// Check how many lines of the polygon does this infinite line intersects with
|
||||
// If the number of intersections is odd, point is in the polygon
|
||||
export const isPointInPolygon = (
|
||||
points: Point[],
|
||||
x: number,
|
||||
y: number,
|
||||
): boolean => {
|
||||
const vertices = points.length;
|
||||
|
||||
// There must be at least 3 vertices in polygon
|
||||
if (vertices < 3) {
|
||||
return false;
|
||||
}
|
||||
const extreme: Point = [Number.MAX_SAFE_INTEGER, y];
|
||||
const p: Point = [x, y];
|
||||
let count = 0;
|
||||
for (let i = 0; i < vertices; i++) {
|
||||
const current = points[i];
|
||||
const next = points[(i + 1) % vertices];
|
||||
if (doSegmentsIntersect(current, next, p, extreme)) {
|
||||
if (orderedColinearOrientation(current, p, next) === 0) {
|
||||
return isPointWithinBounds(current, p, next);
|
||||
}
|
||||
count++;
|
||||
}
|
||||
}
|
||||
// true if count is off
|
||||
return count % 2 === 1;
|
||||
};
|
||||
|
||||
// Returns whether `q` lies inside the segment/rectangle defined by `p` and `r`.
|
||||
// This is an approximation to "does `q` lie on a segment `pr`" check.
|
||||
export const isPointWithinBounds = (p: Point, q: Point, r: Point) => {
|
||||
return (
|
||||
q[0] <= Math.max(p[0], r[0]) &&
|
||||
q[0] >= Math.min(p[0], r[0]) &&
|
||||
q[1] <= Math.max(p[1], r[1]) &&
|
||||
q[1] >= Math.min(p[1], r[1])
|
||||
);
|
||||
};
|
||||
|
||||
// For the ordered points p, q, r, return
|
||||
// 0 if p, q, r are colinear
|
||||
// 1 if Clockwise
|
||||
// 2 if counterclickwise
|
||||
const orderedColinearOrientation = (p: Point, q: Point, r: Point) => {
|
||||
const val = (q[1] - p[1]) * (r[0] - q[0]) - (q[0] - p[0]) * (r[1] - q[1]);
|
||||
if (val === 0) {
|
||||
return 0;
|
||||
}
|
||||
return val > 0 ? 1 : 2;
|
||||
};
|
||||
|
||||
// Check is p1q1 intersects with p2q2
|
||||
const doSegmentsIntersect = (p1: Point, q1: Point, p2: Point, q2: Point) => {
|
||||
const o1 = orderedColinearOrientation(p1, q1, p2);
|
||||
const o2 = orderedColinearOrientation(p1, q1, q2);
|
||||
const o3 = orderedColinearOrientation(p2, q2, p1);
|
||||
const o4 = orderedColinearOrientation(p2, q2, q1);
|
||||
|
||||
if (o1 !== o2 && o3 !== o4) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// p1, q1 and p2 are colinear and p2 lies on segment p1q1
|
||||
if (o1 === 0 && isPointWithinBounds(p1, p2, q1)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// p1, q1 and p2 are colinear and q2 lies on segment p1q1
|
||||
if (o2 === 0 && isPointWithinBounds(p1, q2, q1)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// p2, q2 and p1 are colinear and p1 lies on segment p2q2
|
||||
if (o3 === 0 && isPointWithinBounds(p2, p1, q2)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// p2, q2 and q1 are colinear and q1 lies on segment p2q2
|
||||
if (o4 === 0 && isPointWithinBounds(p2, q1, q2)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
};
|
||||
|
||||
// TODO: Rounding this point causes some shake when free drawing
|
||||
export const getGridPoint = (
|
||||
x: number,
|
||||
y: number,
|
||||
gridSize: number | null,
|
||||
): [number, number] => {
|
||||
if (gridSize) {
|
||||
return [
|
||||
Math.round(x / gridSize) * gridSize,
|
||||
Math.round(y / gridSize) * gridSize,
|
||||
];
|
||||
}
|
||||
return [x, y];
|
||||
};
|
||||
|
||||
export const getCornerRadius = (x: number, element: ExcalidrawElement) => {
|
||||
if (
|
||||
element.roundness?.type === ROUNDNESS.PROPORTIONAL_RADIUS ||
|
||||
element.roundness?.type === ROUNDNESS.LEGACY
|
||||
) {
|
||||
return x * DEFAULT_PROPORTIONAL_RADIUS;
|
||||
}
|
||||
|
||||
if (element.roundness?.type === ROUNDNESS.ADAPTIVE_RADIUS) {
|
||||
const fixedRadiusSize = element.roundness?.value ?? DEFAULT_ADAPTIVE_RADIUS;
|
||||
|
||||
const CUTOFF_SIZE = fixedRadiusSize / DEFAULT_PROPORTIONAL_RADIUS;
|
||||
|
||||
if (x <= CUTOFF_SIZE) {
|
||||
return x * DEFAULT_PROPORTIONAL_RADIUS;
|
||||
}
|
||||
|
||||
return fixedRadiusSize;
|
||||
}
|
||||
|
||||
return 0;
|
||||
};
|
||||
|
||||
export const getControlPointsForBezierCurve = (
|
||||
element: NonDeleted<ExcalidrawLinearElement>,
|
||||
endPoint: Point,
|
||||
) => {
|
||||
const shape = ShapeCache.generateElementShape(element, null);
|
||||
if (!shape) {
|
||||
return null;
|
||||
}
|
||||
|
||||
const ops = getCurvePathOps(shape[0]);
|
||||
let currentP: Mutable<Point> = [0, 0];
|
||||
let index = 0;
|
||||
let minDistance = Infinity;
|
||||
let controlPoints: Mutable<Point>[] | null = null;
|
||||
|
||||
while (index < ops.length) {
|
||||
const { op, data } = ops[index];
|
||||
if (op === "move") {
|
||||
currentP = data as unknown as Mutable<Point>;
|
||||
}
|
||||
if (op === "bcurveTo") {
|
||||
const p0 = currentP;
|
||||
const p1 = [data[0], data[1]] as Mutable<Point>;
|
||||
const p2 = [data[2], data[3]] as Mutable<Point>;
|
||||
const p3 = [data[4], data[5]] as Mutable<Point>;
|
||||
const distance = distance2d(p3[0], p3[1], endPoint[0], endPoint[1]);
|
||||
if (distance < minDistance) {
|
||||
minDistance = distance;
|
||||
controlPoints = [p0, p1, p2, p3];
|
||||
}
|
||||
currentP = p3;
|
||||
}
|
||||
index++;
|
||||
}
|
||||
|
||||
return controlPoints;
|
||||
};
|
||||
|
||||
export const getBezierXY = (
|
||||
p0: Point,
|
||||
p1: Point,
|
||||
p2: Point,
|
||||
p3: Point,
|
||||
t: number,
|
||||
) => {
|
||||
const equation = (t: number, idx: number) =>
|
||||
Math.pow(1 - t, 3) * p3[idx] +
|
||||
3 * t * Math.pow(1 - t, 2) * p2[idx] +
|
||||
3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
|
||||
p0[idx] * Math.pow(t, 3);
|
||||
const tx = equation(t, 0);
|
||||
const ty = equation(t, 1);
|
||||
return [tx, ty];
|
||||
};
|
||||
|
||||
export const getPointsInBezierCurve = (
|
||||
element: NonDeleted<ExcalidrawLinearElement>,
|
||||
endPoint: Point,
|
||||
) => {
|
||||
const controlPoints: Mutable<Point>[] = getControlPointsForBezierCurve(
|
||||
element,
|
||||
endPoint,
|
||||
)!;
|
||||
if (!controlPoints) {
|
||||
return [];
|
||||
}
|
||||
const pointsOnCurve: Mutable<Point>[] = [];
|
||||
let t = 1;
|
||||
// Take 20 points on curve for better accuracy
|
||||
while (t > 0) {
|
||||
const point = getBezierXY(
|
||||
controlPoints[0],
|
||||
controlPoints[1],
|
||||
controlPoints[2],
|
||||
controlPoints[3],
|
||||
t,
|
||||
);
|
||||
pointsOnCurve.push([point[0], point[1]]);
|
||||
t -= 0.05;
|
||||
}
|
||||
if (pointsOnCurve.length) {
|
||||
if (arePointsEqual(pointsOnCurve.at(-1)!, endPoint)) {
|
||||
pointsOnCurve.push([endPoint[0], endPoint[1]]);
|
||||
}
|
||||
}
|
||||
return pointsOnCurve;
|
||||
};
|
||||
|
||||
export const getBezierCurveArcLengths = (
|
||||
element: NonDeleted<ExcalidrawLinearElement>,
|
||||
endPoint: Point,
|
||||
) => {
|
||||
const arcLengths: number[] = [];
|
||||
arcLengths[0] = 0;
|
||||
const points = getPointsInBezierCurve(element, endPoint);
|
||||
let index = 0;
|
||||
let distance = 0;
|
||||
while (index < points.length - 1) {
|
||||
const segmentDistance = distance2d(
|
||||
points[index][0],
|
||||
points[index][1],
|
||||
points[index + 1][0],
|
||||
points[index + 1][1],
|
||||
);
|
||||
distance += segmentDistance;
|
||||
arcLengths.push(distance);
|
||||
index++;
|
||||
}
|
||||
|
||||
return arcLengths;
|
||||
};
|
||||
|
||||
export const getBezierCurveLength = (
|
||||
element: NonDeleted<ExcalidrawLinearElement>,
|
||||
endPoint: Point,
|
||||
) => {
|
||||
const arcLengths = getBezierCurveArcLengths(element, endPoint);
|
||||
return arcLengths.at(-1) as number;
|
||||
};
|
||||
|
||||
// This maps interval to actual interval t on the curve so that when t = 0.5, its actually the point at 50% of the length
|
||||
export const mapIntervalToBezierT = (
|
||||
element: NonDeleted<ExcalidrawLinearElement>,
|
||||
endPoint: Point,
|
||||
interval: number, // The interval between 0 to 1 for which you want to find the point on the curve,
|
||||
) => {
|
||||
const arcLengths = getBezierCurveArcLengths(element, endPoint);
|
||||
const pointsCount = arcLengths.length - 1;
|
||||
const curveLength = arcLengths.at(-1) as number;
|
||||
const targetLength = interval * curveLength;
|
||||
let low = 0;
|
||||
let high = pointsCount;
|
||||
let index = 0;
|
||||
// Doing a binary search to find the largest length that is less than the target length
|
||||
while (low < high) {
|
||||
index = Math.floor(low + (high - low) / 2);
|
||||
if (arcLengths[index] < targetLength) {
|
||||
low = index + 1;
|
||||
} else {
|
||||
high = index;
|
||||
}
|
||||
}
|
||||
if (arcLengths[index] > targetLength) {
|
||||
index--;
|
||||
}
|
||||
if (arcLengths[index] === targetLength) {
|
||||
return index / pointsCount;
|
||||
}
|
||||
|
||||
return (
|
||||
1 -
|
||||
(index +
|
||||
(targetLength - arcLengths[index]) /
|
||||
(arcLengths[index + 1] - arcLengths[index])) /
|
||||
pointsCount
|
||||
);
|
||||
};
|
||||
|
||||
export const arePointsEqual = (p1: Point, p2: Point) => {
|
||||
return p1[0] === p2[0] && p1[1] === p2[1];
|
||||
};
|
||||
|
||||
export const isRightAngle = (angle: number) => {
|
||||
// if our angles were mathematically accurate, we could just check
|
||||
//
|
||||
// angle % (Math.PI / 2) === 0
|
||||
//
|
||||
// but since we're in floating point land, we need to round.
|
||||
//
|
||||
// Below, after dividing by Math.PI, a multiple of 0.5 indicates a right
|
||||
// angle, which we can check with modulo after rounding.
|
||||
return Math.round((angle / Math.PI) * 10000) % 5000 === 0;
|
||||
};
|
||||
|
||||
// Given two ranges, return if the two ranges overlap with each other
|
||||
// e.g. [1, 3] overlaps with [2, 4] while [1, 3] does not overlap with [4, 5]
|
||||
export const rangesOverlap = (
|
||||
[a0, a1]: [number, number],
|
||||
[b0, b1]: [number, number],
|
||||
) => {
|
||||
if (a0 <= b0) {
|
||||
return a1 >= b0;
|
||||
}
|
||||
|
||||
if (a0 >= b0) {
|
||||
return b1 >= a0;
|
||||
}
|
||||
|
||||
return false;
|
||||
};
|
||||
|
||||
// Given two ranges,return ther intersection of the two ranges if any
|
||||
// e.g. the intersection of [1, 3] and [2, 4] is [2, 3]
|
||||
export const rangeIntersection = (
|
||||
rangeA: [number, number],
|
||||
rangeB: [number, number],
|
||||
): [number, number] | null => {
|
||||
const rangeStart = Math.max(rangeA[0], rangeB[0]);
|
||||
const rangeEnd = Math.min(rangeA[1], rangeB[1]);
|
||||
|
||||
if (rangeStart <= rangeEnd) {
|
||||
return [rangeStart, rangeEnd];
|
||||
}
|
||||
|
||||
return null;
|
||||
};
|
||||
|
||||
export const isValueInRange = (value: number, min: number, max: number) => {
|
||||
return value >= min && value <= max;
|
||||
};
|
Loading…
Add table
Add a link
Reference in a new issue