refactor: separate elements logic into a standalone package (#9285)
Some checks failed
Auto release excalidraw next / Auto-release-excalidraw-next (push) Failing after 2m36s
Build Docker image / build-docker (push) Failing after 6s
Cancel previous runs / cancel (push) Failing after 1s
Publish Docker / publish-docker (push) Failing after 31s
New Sentry production release / sentry (push) Failing after 2m3s

This commit is contained in:
Marcel Mraz 2025-03-26 15:24:59 +01:00 committed by GitHub
parent a18f059188
commit 432a46ef9e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
372 changed files with 3466 additions and 2466 deletions

View file

@ -0,0 +1,73 @@
import {
vectorCross,
vectorFromPoint,
type GlobalPoint,
type LocalPoint,
} from "@excalidraw/math";
import type { Bounds } from "@excalidraw/element/bounds";
export type LineSegment<P extends LocalPoint | GlobalPoint> = [P, P];
export function getBBox<P extends LocalPoint | GlobalPoint>(
line: LineSegment<P>,
): Bounds {
return [
Math.min(line[0][0], line[1][0]),
Math.min(line[0][1], line[1][1]),
Math.max(line[0][0], line[1][0]),
Math.max(line[0][1], line[1][1]),
];
}
export function doBBoxesIntersect(a: Bounds, b: Bounds) {
return a[0] <= b[2] && a[2] >= b[0] && a[1] <= b[3] && a[3] >= b[1];
}
const EPSILON = 0.000001;
export function isPointOnLine<P extends GlobalPoint | LocalPoint>(
l: LineSegment<P>,
p: P,
) {
const p1 = vectorFromPoint(l[1], l[0]);
const p2 = vectorFromPoint(p, l[0]);
const r = vectorCross(p1, p2);
return Math.abs(r) < EPSILON;
}
export function isPointRightOfLine<P extends GlobalPoint | LocalPoint>(
l: LineSegment<P>,
p: P,
) {
const p1 = vectorFromPoint(l[1], l[0]);
const p2 = vectorFromPoint(p, l[0]);
return vectorCross(p1, p2) < 0;
}
export function isLineSegmentTouchingOrCrossingLine<
P extends GlobalPoint | LocalPoint,
>(a: LineSegment<P>, b: LineSegment<P>) {
return (
isPointOnLine(a, b[0]) ||
isPointOnLine(a, b[1]) ||
(isPointRightOfLine(a, b[0])
? !isPointRightOfLine(a, b[1])
: isPointRightOfLine(a, b[1]))
);
}
// https://martin-thoma.com/how-to-check-if-two-line-segments-intersect/
export function doLineSegmentsIntersect<P extends GlobalPoint | LocalPoint>(
a: LineSegment<P>,
b: LineSegment<P>,
) {
return (
doBBoxesIntersect(getBBox(a), getBBox(b)) &&
isLineSegmentTouchingOrCrossingLine(a, b) &&
isLineSegmentTouchingOrCrossingLine(b, a)
);
}

View file

@ -0,0 +1,135 @@
import {
lineSegment,
pointFrom,
polygonIncludesPoint,
pointOnLineSegment,
pointOnPolygon,
polygonFromPoints,
type GlobalPoint,
type LocalPoint,
type Polygon,
} from "@excalidraw/math";
import type { Curve } from "@excalidraw/math";
import { pointInEllipse, pointOnEllipse } from "./shape";
import type { Polycurve, Polyline, GeometricShape } from "./shape";
// check if the given point is considered on the given shape's border
export const isPointOnShape = <Point extends GlobalPoint | LocalPoint>(
point: Point,
shape: GeometricShape<Point>,
tolerance = 0,
) => {
// get the distance from the given point to the given element
// check if the distance is within the given epsilon range
switch (shape.type) {
case "polygon":
return pointOnPolygon(point, shape.data, tolerance);
case "ellipse":
return pointOnEllipse(point, shape.data, tolerance);
case "line":
return pointOnLineSegment(point, shape.data, tolerance);
case "polyline":
return pointOnPolyline(point, shape.data, tolerance);
case "curve":
return pointOnCurve(point, shape.data, tolerance);
case "polycurve":
return pointOnPolycurve(point, shape.data, tolerance);
default:
throw Error(`shape ${shape} is not implemented`);
}
};
// check if the given point is considered inside the element's border
export const isPointInShape = <Point extends GlobalPoint | LocalPoint>(
point: Point,
shape: GeometricShape<Point>,
) => {
switch (shape.type) {
case "polygon":
return polygonIncludesPoint(point, shape.data);
case "line":
return false;
case "curve":
return false;
case "ellipse":
return pointInEllipse(point, shape.data);
case "polyline": {
const polygon = polygonFromPoints(shape.data.flat());
return polygonIncludesPoint(point, polygon);
}
case "polycurve": {
return false;
}
default:
throw Error(`shape ${shape} is not implemented`);
}
};
// check if the given element is in the given bounds
export const isPointInBounds = <Point extends GlobalPoint | LocalPoint>(
point: Point,
bounds: Polygon<Point>,
) => {
return polygonIncludesPoint(point, bounds);
};
const pointOnPolycurve = <Point extends LocalPoint | GlobalPoint>(
point: Point,
polycurve: Polycurve<Point>,
tolerance: number,
) => {
return polycurve.some((curve) => pointOnCurve(point, curve, tolerance));
};
const cubicBezierEquation = <Point extends LocalPoint | GlobalPoint>(
curve: Curve<Point>,
) => {
const [p0, p1, p2, p3] = curve;
// B(t) = p0 * (1-t)^3 + 3p1 * t * (1-t)^2 + 3p2 * t^2 * (1-t) + p3 * t^3
return (t: number, idx: number) =>
Math.pow(1 - t, 3) * p3[idx] +
3 * t * Math.pow(1 - t, 2) * p2[idx] +
3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
p0[idx] * Math.pow(t, 3);
};
const polyLineFromCurve = <Point extends LocalPoint | GlobalPoint>(
curve: Curve<Point>,
segments = 10,
): Polyline<Point> => {
const equation = cubicBezierEquation(curve);
let startingPoint = [equation(0, 0), equation(0, 1)] as Point;
const lineSegments: Polyline<Point> = [];
let t = 0;
const increment = 1 / segments;
for (let i = 0; i < segments; i++) {
t += increment;
if (t <= 1) {
const nextPoint: Point = pointFrom(equation(t, 0), equation(t, 1));
lineSegments.push(lineSegment(startingPoint, nextPoint));
startingPoint = nextPoint;
}
}
return lineSegments;
};
export const pointOnCurve = <Point extends LocalPoint | GlobalPoint>(
point: Point,
curve: Curve<Point>,
threshold: number,
) => {
return pointOnPolyline(point, polyLineFromCurve(curve), threshold);
};
export const pointOnPolyline = <Point extends LocalPoint | GlobalPoint>(
point: Point,
polyline: Polyline<Point>,
threshold = 10e-5,
) => {
return polyline.some((line) => pointOnLineSegment(point, line, threshold));
};

View file

@ -0,0 +1,214 @@
import { MIME_TYPES } from "@excalidraw/common";
import { getDefaultAppState } from "@excalidraw/excalidraw/appState";
import {
copyBlobToClipboardAsPng,
copyTextToSystemClipboard,
copyToClipboard,
} from "@excalidraw/excalidraw/clipboard";
import { encodePngMetadata } from "@excalidraw/excalidraw/data/image";
import { serializeAsJSON } from "@excalidraw/excalidraw/data/json";
import { restore } from "@excalidraw/excalidraw/data/restore";
import {
exportToCanvas as _exportToCanvas,
exportToSvg as _exportToSvg,
} from "@excalidraw/excalidraw/scene/export";
import type {
ExcalidrawElement,
ExcalidrawFrameLikeElement,
NonDeleted,
} from "@excalidraw/element/types";
import type { AppState, BinaryFiles } from "@excalidraw/excalidraw/types";
export { MIME_TYPES };
type ExportOpts = {
elements: readonly NonDeleted<ExcalidrawElement>[];
appState?: Partial<Omit<AppState, "offsetTop" | "offsetLeft">>;
files: BinaryFiles | null;
maxWidthOrHeight?: number;
exportingFrame?: ExcalidrawFrameLikeElement | null;
getDimensions?: (
width: number,
height: number,
) => { width: number; height: number; scale?: number };
};
export const exportToCanvas = ({
elements,
appState,
files,
maxWidthOrHeight,
getDimensions,
exportPadding,
exportingFrame,
}: ExportOpts & {
exportPadding?: number;
}) => {
const { elements: restoredElements, appState: restoredAppState } = restore(
{ elements, appState },
null,
null,
);
const { exportBackground, viewBackgroundColor } = restoredAppState;
return _exportToCanvas(
restoredElements,
{ ...restoredAppState, offsetTop: 0, offsetLeft: 0, width: 0, height: 0 },
files || {},
{ exportBackground, exportPadding, viewBackgroundColor, exportingFrame },
(width: number, height: number) => {
const canvas = document.createElement("canvas");
if (maxWidthOrHeight) {
if (typeof getDimensions === "function") {
console.warn(
"`getDimensions()` is ignored when `maxWidthOrHeight` is supplied.",
);
}
const max = Math.max(width, height);
// if content is less then maxWidthOrHeight, fallback on supplied scale
const scale =
maxWidthOrHeight < max
? maxWidthOrHeight / max
: appState?.exportScale ?? 1;
canvas.width = width * scale;
canvas.height = height * scale;
return {
canvas,
scale,
};
}
const ret = getDimensions?.(width, height) || { width, height };
canvas.width = ret.width;
canvas.height = ret.height;
return {
canvas,
scale: ret.scale ?? 1,
};
},
);
};
export const exportToBlob = async (
opts: ExportOpts & {
mimeType?: string;
quality?: number;
exportPadding?: number;
},
): Promise<Blob> => {
let { mimeType = MIME_TYPES.png, quality } = opts;
if (mimeType === MIME_TYPES.png && typeof quality === "number") {
console.warn(`"quality" will be ignored for "${MIME_TYPES.png}" mimeType`);
}
// typo in MIME type (should be "jpeg")
if (mimeType === "image/jpg") {
mimeType = MIME_TYPES.jpg;
}
if (mimeType === MIME_TYPES.jpg && !opts.appState?.exportBackground) {
console.warn(
`Defaulting "exportBackground" to "true" for "${MIME_TYPES.jpg}" mimeType`,
);
opts = {
...opts,
appState: { ...opts.appState, exportBackground: true },
};
}
const canvas = await exportToCanvas(opts);
quality = quality ? quality : /image\/jpe?g/.test(mimeType) ? 0.92 : 0.8;
return new Promise((resolve, reject) => {
canvas.toBlob(
async (blob) => {
if (!blob) {
return reject(new Error("couldn't export to blob"));
}
if (
blob &&
mimeType === MIME_TYPES.png &&
opts.appState?.exportEmbedScene
) {
blob = await encodePngMetadata({
blob,
metadata: serializeAsJSON(
// NOTE as long as we're using the Scene hack, we need to ensure
// we pass the original, uncloned elements when serializing
// so that we keep ids stable
opts.elements,
opts.appState,
opts.files || {},
"local",
),
});
}
resolve(blob);
},
mimeType,
quality,
);
});
};
export const exportToSvg = async ({
elements,
appState = getDefaultAppState(),
files = {},
exportPadding,
renderEmbeddables,
exportingFrame,
skipInliningFonts,
reuseImages,
}: Omit<ExportOpts, "getDimensions"> & {
exportPadding?: number;
renderEmbeddables?: boolean;
skipInliningFonts?: true;
reuseImages?: boolean;
}): Promise<SVGSVGElement> => {
const { elements: restoredElements, appState: restoredAppState } = restore(
{ elements, appState },
null,
null,
);
const exportAppState = {
...restoredAppState,
exportPadding,
};
return _exportToSvg(restoredElements, exportAppState, files, {
exportingFrame,
renderEmbeddables,
skipInliningFonts,
reuseImages,
});
};
export const exportToClipboard = async (
opts: ExportOpts & {
mimeType?: string;
quality?: number;
type: "png" | "svg" | "json";
},
) => {
if (opts.type === "svg") {
const svg = await exportToSvg(opts);
await copyTextToSystemClipboard(svg.outerHTML);
} else if (opts.type === "png") {
await copyBlobToClipboardAsPng(exportToBlob(opts));
} else if (opts.type === "json") {
await copyToClipboard(opts.elements, opts.files);
} else {
throw new Error("Invalid export type");
}
};

View file

@ -0,0 +1,4 @@
export * from "./export";
export * from "./withinBounds";
export * from "./bbox";
export { getCommonBounds } from "@excalidraw/element/bounds";

544
packages/utils/src/shape.ts Normal file
View file

@ -0,0 +1,544 @@
/**
* this file defines pure geometric shapes
*
* for instance, a cubic bezier curve is specified by its four control points and
* an ellipse is defined by its center, angle, semi major axis and semi minor axis
* (but in semi-width and semi-height so it's more relevant to Excalidraw)
*
* the idea with pure shapes is so that we can provide collision and other geoemtric methods not depending on
* the specifics of roughjs or elements in Excalidraw; instead, we can focus on the pure shapes themselves
*
* also included in this file are methods for converting an Excalidraw element or a Drawable from roughjs
* to pure shapes
*/
import { pointsOnBezierCurves } from "points-on-curve";
import { invariant } from "@excalidraw/common";
import {
curve,
lineSegment,
pointFrom,
pointDistance,
pointFromArray,
pointFromVector,
pointRotateRads,
polygon,
polygonFromPoints,
PRECISION,
segmentsIntersectAt,
vector,
vectorAdd,
vectorFromPoint,
vectorScale,
type GlobalPoint,
type LocalPoint,
} from "@excalidraw/math";
import { getElementAbsoluteCoords } from "@excalidraw/element/bounds";
import type {
ElementsMap,
ExcalidrawBindableElement,
ExcalidrawDiamondElement,
ExcalidrawElement,
ExcalidrawEllipseElement,
ExcalidrawEmbeddableElement,
ExcalidrawFrameLikeElement,
ExcalidrawFreeDrawElement,
ExcalidrawIframeElement,
ExcalidrawImageElement,
ExcalidrawLinearElement,
ExcalidrawRectangleElement,
ExcalidrawSelectionElement,
ExcalidrawTextElement,
} from "@excalidraw/element/types";
import type { Curve, LineSegment, Polygon, Radians } from "@excalidraw/math";
import type { Drawable, Op } from "roughjs/bin/core";
// a polyline (made up term here) is a line consisting of other line segments
// this corresponds to a straight line element in the editor but it could also
// be used to model other elements
export type Polyline<Point extends GlobalPoint | LocalPoint> =
LineSegment<Point>[];
// a polycurve is a curve consisting of ther curves, this corresponds to a complex
// curve on the canvas
export type Polycurve<Point extends GlobalPoint | LocalPoint> = Curve<Point>[];
// an ellipse is specified by its center, angle, and its major and minor axes
// but for the sake of simplicity, we've used halfWidth and halfHeight instead
// in replace of semi major and semi minor axes
export type Ellipse<Point extends GlobalPoint | LocalPoint> = {
center: Point;
angle: Radians;
halfWidth: number;
halfHeight: number;
};
export type GeometricShape<Point extends GlobalPoint | LocalPoint> =
| {
type: "line";
data: LineSegment<Point>;
}
| {
type: "polygon";
data: Polygon<Point>;
}
| {
type: "curve";
data: Curve<Point>;
}
| {
type: "ellipse";
data: Ellipse<Point>;
}
| {
type: "polyline";
data: Polyline<Point>;
}
| {
type: "polycurve";
data: Polycurve<Point>;
};
type RectangularElement =
| ExcalidrawRectangleElement
| ExcalidrawDiamondElement
| ExcalidrawFrameLikeElement
| ExcalidrawEmbeddableElement
| ExcalidrawImageElement
| ExcalidrawIframeElement
| ExcalidrawTextElement
| ExcalidrawSelectionElement;
// polygon
export const getPolygonShape = <Point extends GlobalPoint | LocalPoint>(
element: RectangularElement,
): GeometricShape<Point> => {
const { angle, width, height, x, y } = element;
const cx = x + width / 2;
const cy = y + height / 2;
const center: Point = pointFrom(cx, cy);
let data: Polygon<Point>;
if (element.type === "diamond") {
data = polygon(
pointRotateRads(pointFrom(cx, y), center, angle),
pointRotateRads(pointFrom(x + width, cy), center, angle),
pointRotateRads(pointFrom(cx, y + height), center, angle),
pointRotateRads(pointFrom(x, cy), center, angle),
);
} else {
data = polygon(
pointRotateRads(pointFrom(x, y), center, angle),
pointRotateRads(pointFrom(x + width, y), center, angle),
pointRotateRads(pointFrom(x + width, y + height), center, angle),
pointRotateRads(pointFrom(x, y + height), center, angle),
);
}
return {
type: "polygon",
data,
};
};
// return the selection box for an element, possibly rotated as well
export const getSelectionBoxShape = <Point extends GlobalPoint | LocalPoint>(
element: ExcalidrawElement,
elementsMap: ElementsMap,
padding = 10,
) => {
let [x1, y1, x2, y2, cx, cy] = getElementAbsoluteCoords(
element,
elementsMap,
true,
);
x1 -= padding;
x2 += padding;
y1 -= padding;
y2 += padding;
//const angleInDegrees = angleToDegrees(element.angle);
const center = pointFrom(cx, cy);
const topLeft = pointRotateRads(pointFrom(x1, y1), center, element.angle);
const topRight = pointRotateRads(pointFrom(x2, y1), center, element.angle);
const bottomLeft = pointRotateRads(pointFrom(x1, y2), center, element.angle);
const bottomRight = pointRotateRads(pointFrom(x2, y2), center, element.angle);
return {
type: "polygon",
data: [topLeft, topRight, bottomRight, bottomLeft],
} as GeometricShape<Point>;
};
// ellipse
export const getEllipseShape = <Point extends GlobalPoint | LocalPoint>(
element: ExcalidrawEllipseElement,
): GeometricShape<Point> => {
const { width, height, angle, x, y } = element;
return {
type: "ellipse",
data: {
center: pointFrom(x + width / 2, y + height / 2),
angle,
halfWidth: width / 2,
halfHeight: height / 2,
},
};
};
export const getCurvePathOps = (shape: Drawable): Op[] => {
// NOTE (mtolmacs): Temporary fix for extremely large elements
if (!shape) {
return [];
}
for (const set of shape.sets) {
if (set.type === "path") {
return set.ops;
}
}
return shape.sets[0].ops;
};
// linear
export const getCurveShape = <Point extends GlobalPoint | LocalPoint>(
roughShape: Drawable,
startingPoint: Point = pointFrom(0, 0),
angleInRadian: Radians,
center: Point,
): GeometricShape<Point> => {
const transform = (p: Point): Point =>
pointRotateRads(
pointFrom(p[0] + startingPoint[0], p[1] + startingPoint[1]),
center,
angleInRadian,
);
const ops = getCurvePathOps(roughShape);
const polycurve: Polycurve<Point> = [];
let p0 = pointFrom<Point>(0, 0);
for (const op of ops) {
if (op.op === "move") {
const p = pointFromArray<Point>(op.data);
invariant(p != null, "Ops data is not a point");
p0 = transform(p);
}
if (op.op === "bcurveTo") {
const p1 = transform(pointFrom<Point>(op.data[0], op.data[1]));
const p2 = transform(pointFrom<Point>(op.data[2], op.data[3]));
const p3 = transform(pointFrom<Point>(op.data[4], op.data[5]));
polycurve.push(curve<Point>(p0, p1, p2, p3));
p0 = p3;
}
}
return {
type: "polycurve",
data: polycurve,
};
};
const polylineFromPoints = <Point extends GlobalPoint | LocalPoint>(
points: Point[],
): Polyline<Point> => {
let previousPoint: Point = points[0];
const polyline: LineSegment<Point>[] = [];
for (let i = 1; i < points.length; i++) {
const nextPoint = points[i];
polyline.push(lineSegment<Point>(previousPoint, nextPoint));
previousPoint = nextPoint;
}
return polyline;
};
export const getFreedrawShape = <Point extends GlobalPoint | LocalPoint>(
element: ExcalidrawFreeDrawElement,
center: Point,
isClosed: boolean = false,
): GeometricShape<Point> => {
const transform = (p: Point) =>
pointRotateRads(
pointFromVector(
vectorAdd(vectorFromPoint(p), vector(element.x, element.y)),
),
center,
element.angle,
);
const polyline = polylineFromPoints(
element.points.map((p) => transform(p as Point)),
);
return (
isClosed
? {
type: "polygon",
data: polygonFromPoints(polyline.flat()),
}
: {
type: "polyline",
data: polyline,
}
) as GeometricShape<Point>;
};
export const getClosedCurveShape = <Point extends GlobalPoint | LocalPoint>(
element: ExcalidrawLinearElement,
roughShape: Drawable,
startingPoint: Point = pointFrom<Point>(0, 0),
angleInRadian: Radians,
center: Point,
): GeometricShape<Point> => {
const transform = (p: Point) =>
pointRotateRads(
pointFrom(p[0] + startingPoint[0], p[1] + startingPoint[1]),
center,
angleInRadian,
);
if (element.roundness === null) {
return {
type: "polygon",
data: polygonFromPoints(
element.points.map((p) => transform(p as Point)) as Point[],
),
};
}
const ops = getCurvePathOps(roughShape);
const points: Point[] = [];
let odd = false;
for (const operation of ops) {
if (operation.op === "move") {
odd = !odd;
if (odd) {
points.push(pointFrom(operation.data[0], operation.data[1]));
}
} else if (operation.op === "bcurveTo") {
if (odd) {
points.push(pointFrom(operation.data[0], operation.data[1]));
points.push(pointFrom(operation.data[2], operation.data[3]));
points.push(pointFrom(operation.data[4], operation.data[5]));
}
} else if (operation.op === "lineTo") {
if (odd) {
points.push(pointFrom(operation.data[0], operation.data[1]));
}
}
}
const polygonPoints = pointsOnBezierCurves(points, 10, 5).map((p) =>
transform(p as Point),
) as Point[];
return {
type: "polygon",
data: polygonFromPoints<Point>(polygonPoints),
};
};
/**
* Determine intersection of a rectangular shaped element and a
* line segment.
*
* @param element The rectangular element to test against
* @param segment The segment intersecting the element
* @param gap Optional value to inflate the shape before testing
* @returns An array of intersections
*/
// TODO: Replace with final rounded rectangle code
export const segmentIntersectRectangleElement = <
Point extends LocalPoint | GlobalPoint,
>(
element: ExcalidrawBindableElement,
segment: LineSegment<Point>,
gap: number = 0,
): Point[] => {
const bounds = [
element.x - gap,
element.y - gap,
element.x + element.width + gap,
element.y + element.height + gap,
];
const center = pointFrom(
(bounds[0] + bounds[2]) / 2,
(bounds[1] + bounds[3]) / 2,
);
return [
lineSegment(
pointRotateRads(pointFrom(bounds[0], bounds[1]), center, element.angle),
pointRotateRads(pointFrom(bounds[2], bounds[1]), center, element.angle),
),
lineSegment(
pointRotateRads(pointFrom(bounds[2], bounds[1]), center, element.angle),
pointRotateRads(pointFrom(bounds[2], bounds[3]), center, element.angle),
),
lineSegment(
pointRotateRads(pointFrom(bounds[2], bounds[3]), center, element.angle),
pointRotateRads(pointFrom(bounds[0], bounds[3]), center, element.angle),
),
lineSegment(
pointRotateRads(pointFrom(bounds[0], bounds[3]), center, element.angle),
pointRotateRads(pointFrom(bounds[0], bounds[1]), center, element.angle),
),
]
.map((s) => segmentsIntersectAt(segment, s))
.filter((i): i is Point => !!i);
};
const distanceToEllipse = <Point extends LocalPoint | GlobalPoint>(
p: Point,
ellipse: Ellipse<Point>,
) => {
const { angle, halfWidth, halfHeight, center } = ellipse;
const a = halfWidth;
const b = halfHeight;
const translatedPoint = vectorAdd(
vectorFromPoint(p),
vectorScale(vectorFromPoint(center), -1),
);
const [rotatedPointX, rotatedPointY] = pointRotateRads(
pointFromVector(translatedPoint),
pointFrom(0, 0),
-angle as Radians,
);
const px = Math.abs(rotatedPointX);
const py = Math.abs(rotatedPointY);
let tx = 0.707;
let ty = 0.707;
for (let i = 0; i < 3; i++) {
const x = a * tx;
const y = b * ty;
const ex = ((a * a - b * b) * tx ** 3) / a;
const ey = ((b * b - a * a) * ty ** 3) / b;
const rx = x - ex;
const ry = y - ey;
const qx = px - ex;
const qy = py - ey;
const r = Math.hypot(ry, rx);
const q = Math.hypot(qy, qx);
tx = Math.min(1, Math.max(0, ((qx * r) / q + ex) / a));
ty = Math.min(1, Math.max(0, ((qy * r) / q + ey) / b));
const t = Math.hypot(ty, tx);
tx /= t;
ty /= t;
}
const [minX, minY] = [
a * tx * Math.sign(rotatedPointX),
b * ty * Math.sign(rotatedPointY),
];
return pointDistance(
pointFrom(rotatedPointX, rotatedPointY),
pointFrom(minX, minY),
);
};
export const pointOnEllipse = <Point extends LocalPoint | GlobalPoint>(
point: Point,
ellipse: Ellipse<Point>,
threshold = PRECISION,
) => {
return distanceToEllipse(point, ellipse) <= threshold;
};
export const pointInEllipse = <Point extends LocalPoint | GlobalPoint>(
p: Point,
ellipse: Ellipse<Point>,
) => {
const { center, angle, halfWidth, halfHeight } = ellipse;
const translatedPoint = vectorAdd(
vectorFromPoint(p),
vectorScale(vectorFromPoint(center), -1),
);
const [rotatedPointX, rotatedPointY] = pointRotateRads(
pointFromVector(translatedPoint),
pointFrom(0, 0),
-angle as Radians,
);
return (
(rotatedPointX / halfWidth) * (rotatedPointX / halfWidth) +
(rotatedPointY / halfHeight) * (rotatedPointY / halfHeight) <=
1
);
};
export const ellipseAxes = <Point extends LocalPoint | GlobalPoint>(
ellipse: Ellipse<Point>,
) => {
const widthGreaterThanHeight = ellipse.halfWidth > ellipse.halfHeight;
const majorAxis = widthGreaterThanHeight
? ellipse.halfWidth * 2
: ellipse.halfHeight * 2;
const minorAxis = widthGreaterThanHeight
? ellipse.halfHeight * 2
: ellipse.halfWidth * 2;
return {
majorAxis,
minorAxis,
};
};
export const ellipseFocusToCenter = <Point extends LocalPoint | GlobalPoint>(
ellipse: Ellipse<Point>,
) => {
const { majorAxis, minorAxis } = ellipseAxes(ellipse);
return Math.sqrt(majorAxis ** 2 - minorAxis ** 2);
};
export const ellipseExtremes = <Point extends LocalPoint | GlobalPoint>(
ellipse: Ellipse<Point>,
) => {
const { center, angle } = ellipse;
const { majorAxis, minorAxis } = ellipseAxes(ellipse);
const cos = Math.cos(angle);
const sin = Math.sin(angle);
const sqSum = majorAxis ** 2 + minorAxis ** 2;
const sqDiff = (majorAxis ** 2 - minorAxis ** 2) * Math.cos(2 * angle);
const yMax = Math.sqrt((sqSum - sqDiff) / 2);
const xAtYMax =
(yMax * sqSum * sin * cos) /
(majorAxis ** 2 * sin ** 2 + minorAxis ** 2 * cos ** 2);
const xMax = Math.sqrt((sqSum + sqDiff) / 2);
const yAtXMax =
(xMax * sqSum * sin * cos) /
(majorAxis ** 2 * cos ** 2 + minorAxis ** 2 * sin ** 2);
const centerVector = vectorFromPoint(center);
return [
vectorAdd(vector(xAtYMax, yMax), centerVector),
vectorAdd(vectorScale(vector(xAtYMax, yMax), -1), centerVector),
vectorAdd(vector(xMax, yAtXMax), centerVector),
vectorAdd(vector(xMax, yAtXMax), centerVector),
];
};

View file

@ -0,0 +1,33 @@
import { diffStringsUnified } from "jest-diff";
expect.extend({
toCloselyEqualPoints(received, expected, precision) {
if (!Array.isArray(received) || !Array.isArray(expected)) {
throw new Error("expected and received are not point arrays");
}
const COMPARE = 1 / Math.pow(10, precision || 2);
const pass = expected.every(
(point, idx) =>
Math.abs(received[idx]?.[0] - point[0]) < COMPARE &&
Math.abs(received[idx]?.[1] - point[1]) < COMPARE,
);
if (!pass) {
return {
message: () => ` The provided array of points are not close enough.
${diffStringsUnified(
JSON.stringify(expected, undefined, 2),
JSON.stringify(received, undefined, 2),
)}`,
pass: false,
};
}
return {
message: () => `expected ${received} to not be close to ${expected}`,
pass: true,
};
},
});

View file

@ -0,0 +1,229 @@
import { arrayToMap } from "@excalidraw/common";
import { getElementBounds } from "@excalidraw/element/bounds";
import {
isArrowElement,
isExcalidrawElement,
isFreeDrawElement,
isLinearElement,
isTextElement,
} from "@excalidraw/element/typeChecks";
import {
rangeIncludesValue,
pointFrom,
pointRotateRads,
rangeInclusive,
} from "@excalidraw/math";
import type { Bounds } from "@excalidraw/element/bounds";
import type {
ExcalidrawElement,
ExcalidrawFreeDrawElement,
ExcalidrawLinearElement,
NonDeletedExcalidrawElement,
} from "@excalidraw/element/types";
import type { LocalPoint } from "@excalidraw/math";
type Element = NonDeletedExcalidrawElement;
type Elements = readonly NonDeletedExcalidrawElement[];
type Points = readonly LocalPoint[];
/** @returns vertices relative to element's top-left [0,0] position */
const getNonLinearElementRelativePoints = (
element: Exclude<
Element,
ExcalidrawLinearElement | ExcalidrawFreeDrawElement
>,
): [
TopLeft: LocalPoint,
TopRight: LocalPoint,
BottomRight: LocalPoint,
BottomLeft: LocalPoint,
] => {
if (element.type === "diamond") {
return [
pointFrom(element.width / 2, 0),
pointFrom(element.width, element.height / 2),
pointFrom(element.width / 2, element.height),
pointFrom(0, element.height / 2),
];
}
return [
pointFrom(0, 0),
pointFrom(0 + element.width, 0),
pointFrom(0 + element.width, element.height),
pointFrom(0, element.height),
];
};
/** @returns vertices relative to element's top-left [0,0] position */
const getElementRelativePoints = (element: ExcalidrawElement): Points => {
if (isLinearElement(element) || isFreeDrawElement(element)) {
return element.points;
}
return getNonLinearElementRelativePoints(element);
};
const getMinMaxPoints = (points: Points) => {
const ret = points.reduce(
(limits, [x, y]) => {
limits.minY = Math.min(limits.minY, y);
limits.minX = Math.min(limits.minX, x);
limits.maxX = Math.max(limits.maxX, x);
limits.maxY = Math.max(limits.maxY, y);
return limits;
},
{
minX: Infinity,
minY: Infinity,
maxX: -Infinity,
maxY: -Infinity,
cx: 0,
cy: 0,
},
);
ret.cx = (ret.maxX + ret.minX) / 2;
ret.cy = (ret.maxY + ret.minY) / 2;
return ret;
};
const getRotatedBBox = (element: Element): Bounds => {
const points = getElementRelativePoints(element);
const { cx, cy } = getMinMaxPoints(points);
const centerPoint = pointFrom<LocalPoint>(cx, cy);
const rotatedPoints = points.map((p) =>
pointRotateRads(p, centerPoint, element.angle),
);
const { minX, minY, maxX, maxY } = getMinMaxPoints(rotatedPoints);
return [
minX + element.x,
minY + element.y,
maxX + element.x,
maxY + element.y,
];
};
export const isElementInsideBBox = (
element: Element,
bbox: Bounds,
eitherDirection = false,
): boolean => {
const elementBBox = getRotatedBBox(element);
const elementInsideBbox =
bbox[0] <= elementBBox[0] &&
bbox[2] >= elementBBox[2] &&
bbox[1] <= elementBBox[1] &&
bbox[3] >= elementBBox[3];
if (!eitherDirection) {
return elementInsideBbox;
}
if (elementInsideBbox) {
return true;
}
return (
elementBBox[0] <= bbox[0] &&
elementBBox[2] >= bbox[2] &&
elementBBox[1] <= bbox[1] &&
elementBBox[3] >= bbox[3]
);
};
export const elementPartiallyOverlapsWithOrContainsBBox = (
element: Element,
bbox: Bounds,
): boolean => {
const elementBBox = getRotatedBBox(element);
return (
(rangeIncludesValue(elementBBox[0], rangeInclusive(bbox[0], bbox[2])) ||
rangeIncludesValue(
bbox[0],
rangeInclusive(elementBBox[0], elementBBox[2]),
)) &&
(rangeIncludesValue(elementBBox[1], rangeInclusive(bbox[1], bbox[3])) ||
rangeIncludesValue(
bbox[1],
rangeInclusive(elementBBox[1], elementBBox[3]),
))
);
};
export const elementsOverlappingBBox = ({
elements,
bounds,
type,
errorMargin = 0,
}: {
elements: Elements;
bounds: Bounds | ExcalidrawElement;
/** safety offset. Defaults to 0. */
errorMargin?: number;
/**
* - overlap: elements overlapping or inside bounds
* - contain: elements inside bounds or bounds inside elements
* - inside: elements inside bounds
**/
type: "overlap" | "contain" | "inside";
}) => {
if (isExcalidrawElement(bounds)) {
bounds = getElementBounds(bounds, arrayToMap(elements));
}
const adjustedBBox: Bounds = [
bounds[0] - errorMargin,
bounds[1] - errorMargin,
bounds[2] + errorMargin,
bounds[3] + errorMargin,
];
const includedElementSet = new Set<string>();
for (const element of elements) {
if (includedElementSet.has(element.id)) {
continue;
}
const isOverlaping =
type === "overlap"
? elementPartiallyOverlapsWithOrContainsBBox(element, adjustedBBox)
: type === "inside"
? isElementInsideBBox(element, adjustedBBox)
: isElementInsideBBox(element, adjustedBBox, true);
if (isOverlaping) {
includedElementSet.add(element.id);
if (element.boundElements) {
for (const boundElement of element.boundElements) {
includedElementSet.add(boundElement.id);
}
}
if (isTextElement(element) && element.containerId) {
includedElementSet.add(element.containerId);
}
if (isArrowElement(element)) {
if (element.startBinding) {
includedElementSet.add(element.startBinding.elementId);
}
if (element.endBinding) {
includedElementSet.add(element.endBinding?.elementId);
}
}
}
}
return elements.filter((element) => includedElementSet.has(element.id));
};